Популярно и просто о том, что это такое − тактовая частота процессора
Содержание:
- Что такое процессор (CPU)?
- Многоядерность процессора
- Способы изменения частоты процессора на ПК и ноутбуке
- Зависимость частоты процессора от количества ядер
- Детальное определение
- Рекомендация
- Способы оцифровки
- Как образовывается
- История появления процессоров
- Тактовая частота для многоядерного процессора
- Управление частотой в Linux
Что такое процессор (CPU)?
Процессор, что это вообще такое? Зачем он нужен? За какие задачи он отвечает?
Для большинства неопытных и технически неподготовленных пользователей процессором зачастую выступает весь системный блок в сборе. Но это относительно ошибочное суждение, процессор — это нечто, что сокрыто за стенками корпуса и толстым радиатором с вентилятором для его охлаждения.
Процессор или, как его еще называют, центральный процессор (Central Processing Unit) — это электронное устройство (интегральная схема), которое выполняет и обрабатывает машинные инструкции, код программ (машинный язык) и отвечает за все логические операции, которые протекают внутри вашей операционной системы и системного блока.
Без преувеличения, процессор можно назвать мозгом (или сердцем, это кому как больше нравится) любого компьютера, мобильного устройства или другого периферийного устройства. Да-да, слово процессор применимо не только к вашему системному блоку, но и планшету, смарт-холодильнику, игровой приставке, фотоаппарату и другой электронике.
Внешне процессор выглядит как квадратный (или прямоугольный) элемент или плата, в нижней части которой располагается контактная группа для подключения, в вверху находится сам кристалл процессора, который сокрыт под металлической крышкой, чтобы исключить возможность повреждения хрупкого кристалла процессора, а также крышка помогает при отводе тепла с поверхности кристалла на радиатор системы охлаждения.
Кристалл процессора состоит из кремния. Если точнее, полупроводники, из которых состоит процессор, производятся из кремния. На кремневой пластине кристалла в несколько слоёв располагается несколько триллиардов транзисторов (размер которых составляет порядка ~10 нм в зависимости от используемого техпроцесса при производстве), которые отвечают за все логические операции процессора.
На самом деле это только поверхностное описание того, из чего состоит процессор, и оно предназначено, скорее, для визуализации того, что из себя представляет процессор внутри. На самом деле все намного сложнее. К сожалению, просто и доходчиво объяснить все принципы создания и работы процессора не так просто, здесь потребуются знания как элементарной алгебры, так и продвинутой физики и электротехники, да и большинству пользователей это попросту не нужно.
Впоследствии производители процессоров научились располагать на печатной плате, помимо самого кристалла процессора, кристалл видеоядра (видеокарты), что позволило исключить необходимость в отдельной дискретной видеокарте для вывода изображения на монитор.
Подводя итог этого блока статьи и что бы дать простой ответ на такой сложный вопрос «Что такое процессор (CPU)» — процессор это сердце любого современного устройства, которое выполняет все основные операции, будь то простое сложение 2+2, набор текста в Microsoft Word или расчет физической модели в Blender.
Многоядерность процессора
Эта характеристика, последние несколько лет, является одной из наиболее важных в сфере центральных процессоров, но не решающей, как я уже упоминал выше. Уже давно прошла эра одноядерных процессоров, поэтому сейчас стоит выбирать многоядерные процессоры (одноядерные еще надо постараться найти). Соответственно, количество ядер нужно подбирать, под конкретные задачи. К примеру, для простеньких задач в виде офисных приложений и сёрфинга в интернете, двухъядерного процессора хватит более чем полностью.
А вот для таких задач как профессиональная работа с графикой, понадобится процессор с 4 или 8 ядрами – многое решает конкретная модель процессора и специфика задач. Прочитать подробно о самих принципах многоядерности вы можете в полной статье.
Читать статью: Многоядерность процессоров
Способы изменения частоты процессора на ПК и ноутбуке
На ноутбуке способов изменения частоты, связанных со встроенным функционалом (BIOS и т.д.) относительно немного, поскольку производители сознательно «огораживают» своих пользователей от всех потенциально опасных действий. В этом есть своя логика, поскольку ноуты являются персоналками, работающими практически на пределе своих способностей и неизвестно, как они себя поведут при нарушении в них баланса тепловыделения и теплоотвода.
Какая частота для ноутбука является штатной, можно узнать из его описания, но какая будет максимальной, скорее всего, определять придётся самостоятельно, поскольку ориентироваться на опыт других пользователей в этом вопросе, мягко говоря, не стоит. Дело в том, что в силу особенностей дизайна ноутов даже незначительные изменения в конструкции могут оказать существенное влияние на его охлаждение. А зачастую и даже изделия из одной партии ведут себя в одних и тех же задачах совершенно по-разному.
Поэтому, решая вопрос, как поднять частоту на ноуте, следует очень внимательно следить за его состоянием, поскольку сложность настроек параметров тепловой безопасности такого типа персоналок может сыграть с пользователем злую шутку. Например, можно настроить ноут на минимальную интенсивность системы охлаждения, но при этом при помощи твикера дать ему разгон на процессор. Как при этом он себя поведёт – неизвестно. Если отключится – хорошо. А если нет?
В любом случае, экспериментируя с FSB или множителем ЦП ноутбука, следует пользоваться только программами-твикерами, разработанными исключительно производителями ноута. Стороннее программное обеспечение лучше не использовать.
Зависимость частоты процессора от количества ядер
Фактически число или количество ядер на частоту никакого влияния не оказывает. Однако, есть некоторые особенности работы многоядерных систем, связанные с этим. Вообще-то изначально многоядерность планировалась, как дальнейшее достижение всё большей производительности. Но со временем стало понятно, что быстродействие современных ЦП в тривиальных задачах и так более, чем достаточное.
И на первое место в большем количестве задач стали выходить не сколько вопросы производительности, сколько вопросы энергосбережения. Последние требовали снижения частоты, поскольку, как показала практика, чаще снизить частоту выгоднее, чем поддерживать её в каком-то постоянном значении.
До 2015 года все многоядерные ЦП имели единые значения скорости работы для каждого ядра. И только появление в 2015 году семейства Skylake позволило устанавливать для каждого ядра своё быстродействие. Для всех последующих поколений (шестое и более поздние) понижать или повышать частоты можно для каждого ядра в отдельности. Методы, как понизить частоту или повысить её для каждого ядра в отдельности, такие же, как и для процессора в целом. Современные твикеры позволяют вести тонкую настройку частоты каждого ядра.
То есть теперь вопрос, что важнее: скорость или потребление решается уже на уровне ядра.
Детальное определение
Итак, тактовая частота – это количество операций, которые процессор может выполнять за секунду. Измеряется эта величина в Герцах.
Эта единица измерения названа в честь известного ученого, который проводил эксперименты, направленные на изучение периодических, то есть повторяющихся процессов.
А причем Герц к операциям за секунду?
Такой вопрос возникает при чтении большинства статей в интернете у людей, которые не очень хорошо изучали физику в школе (может быть, не по своей вине). Дело в том, что эта единица как раз и обозначает частоту, то есть количество повторений, этих самых периодических процессов за секунду.
Она позволяет измерять не только число операций, а и другие всевозможные показатели. К примеру, если вы делаете 3 входа в секунду, значит, частота дыхания составляет 3 Герца.
Intel Core i7
Что же касается процессоров, то здесь могут выполняться самые разные операции, которые сводятся к вычислению тех или иных параметров. Собственно, количество вычислений этих самых параметров за секунду и называется тактовой частотой.
Как все просто!
На практике понятие «Герц» используется крайне редко, чаще мы слышим о мегаГерцах, килоГерцах и так далее. В таблице 1 приведены «расшифровки» этих величин.
Таблица 1. Обозначения
Первое и последнее в настоящее время используется крайне редко.
То есть, если вы слышите, что в нем 4 ГГц, значит, он может выполнять 4 миллиарда операций каждую секунду.
Много?
Отнюдь! На сегодняшний день это средний показатель. Наверняка, очень скоро мы услышим о моделях с частотой в тераГерц или даже больше.
Рекомендация
Многие конечно считают, что это параметр не самый важный, но этот показатель напрямую влияет на производительность пк, поэтому если у вас есть возможность приобрести более высокую гигагерцовость, советую его рассмотреть.
На мой взгляд я бы рассматривал вот эти оптимальных моделей для различных задач:
- INTEL Pentium G5600
- AMD Ryzen 3 2200G
- INTEL Core i3 8100
- INTEL Core i5 8400
- INTEL Core i7 8700
Для каких задач они предназначены? Можете посмотреть в статье как выбирать процессор для компьютера, чтобы потом не пожалеть.
Цены не указываю, так как они всегда меняются, так что смотрите. Выбор за вами.
Надеюсь вам стало все понятно. На этом буду заканчивать. Чтобы оставаться в курсе о появлении новых, понятных и интересных статей на моем блоге подписывайтесь здесь, оставляйте комментарии, мне всегда интересно ваше мнение
Спасибо за внимание. До встречи в новых статьях
С уважением автор блога Андрей Андреев.
Способы оцифровки
★ Используя «подручные» средства
Один из самых простых способов как оцифровать пленку, не требующий приобретения дополнительного оборудования, — захват изображения с экрана монитора и сохранение его в необходимом формате. Воспользоваться можно двумя приложениями: «Экранной Камерой» – программой для оцифровки видео и «ВидеоМОНТАЖОМ» – для редактирования. Потребуется выполнить 4 простых шага.
Шаг №1. Подключите выход видеомагнитофона или аналоговой видеокамеры (стандарт VHS и аналогичные) к соответствующему входу на вашем телевизоре, например, типа SCART или RSA, хотя можно воспользоваться и самым обыкновенным коаксиальным (или по-другому, антенным) кабелем.
Используйте SCART-кабель, чтобы подключить проигрыватель видео к телевизору
Шаг №2. Подключите вход HDMI телевизора к выходу компьютера или ноутбука для того, чтобы выводимое изображение транслировалось на экран монитора.
Шаг №3. Произведите захват изображения с монитора, с помощью вышеупомянутого софта.
Шаг №4. Включите воспроизведение. По окончании сохраните файл для дальнейшей обработки.
Общая схема оцифровки кассет
В этом случае телевизор выступает в роли платы видеозахвата. Его использование обусловлено в случае, если производится обработка одной-двух записей, поскольку при этом пользователь зачастую сталкивается с несогласованностью разрешения экрана, соотношения сторон, некоторых других стандартов (например, звука).
★ При помощи специальных плат или устройств
Специализированные устройства видеозахвата созданы, чтобы без потерь качества «перегонять» аналоговый сигнал в «цифру». Причем производители прикладывают соответствующий набор драйверов, которые не только позволяют произвести эту операцию без промежуточного сохранения, но и поддерживают максимальное количество кодеков и стандартов. Таким образом, пользователь может сохранить выходной файл в нужном формате, после чего произвести его окончательную обработку в редакторе.
Плата видеозахвата может быть выполнена как в виде отдельного устройства (в том числе и USB), так и входить в состав TV-тюнера или видеокарты. Опознать их легко: они имеют на задней панели 3 цветных разъема (т. н. «тюльпаны») или коннектор S-Video. Но в последнем случае, для захвата звуковой дорожки, придется воспользоваться дополнительно звуковой картой и переходником RSA-minijet, а к соответствующему разъему подключить выход «Audio» видеомагнитофона.
Подключите устройство видеозахвата с помощью коннектора S-Video
Самыми «продвинутыми» являются специализированные внешние боксы, которые подключаются к компьютеру с использованием порта FireWare, обладают, как правило, собственным программным обеспечением и могут работать в качестве накопителя. Пользователю нет необходимости разбираться, как оцифровать видеокассету, — все происходит автоматически. В дальнейшем лишь необходимо перенести файлы в видеоредактор.
Разновидности входов порта FireWare
★ Если «цифра» на пленке
Помимо «старых» аналоговых видеокассет, о которых говорилось выше, существуют камеры, производящие запись в цифровом формате на магнитную ленту. Часто их называют DV-, HDV-рекордерами. Встречаются также стандарты SD и HD-SDI. Причем плотность записи может быть различной — выше для HDV и ниже для DV.
Классический HDV-рекордер от Sony
Оцифровка видео, записанного с помощью этого типа камер, не требует применения платы захвата и легко производится с использованием только приложения «ВидеоМОНТАЖ», которое поддерживает работу с таким типом устройств. Подключение осуществляется с помощью порта FireWare или SDI, а для дистанционного управления такой видеокамерой с компьютера, используется дополнительно порт RS-422 или RS-232.
★ С помощью цифрового видеомагнитофона
Оцифровка видеокассет в домашних условиях может быть осуществлена еще одним простым способом — с использованием цифрового рекордера. Подобные девайсы выпускают многие производители, но наиболее качественными считаются модели Pioneer и Sony, включающие не только DVD-привод, но и HDD-накопитель.
Оригинальный цифровой рекордер от Pioneer
Работа с такими устройствами проста: необходимо подключить выходы VHS-видеомагнитофона с аналогичными входами VDR (рекордера), после чего одновременно включить воспроизведение и запись. Захват будет осуществляться в автоматическом режиме, а сам ролик можно прожечь на DVD-носитель или скопировать сразу жесткий диск, в зависимости от используемой модели.
Как образовывается
Конечно, то, о чем мы будем говорить дальше, смогут понять лишь те, кто хоть немного связан с физикой и инженерией, но мы все-таки попробуем объяснить все простым языком.
Итак, в нем есть следующие устройства:
- тактовый резонатор – представляет собой обычный кристалл кварца, заключен в специальный защитный контейнер;
- тактовый генератор – устройство, которое преобразовывает один вид колебаний в другие;
- металлическая крышка;
- шина данных;
- текстолитовая подложка, к которой крепятся все остальные устройства.
Устройство
Так вот, кристалл кварца, то есть тактовый резонатор образуют колебания вследствие подачи напряжения. В результате образовываются колебания электрического тока.
К подложке крепится тактовый генератор, который преобразовывает электрические колебания в импульсы.
Они передаются на шины данных, и таким образом результат вычислений попадает к пользователю.
Вот именно таким путем и получается тактовая частота.
Интересно, что в отношении данного понятия существует огромное количество заблуждений, в частности, относительно связи ядер и частоты. Поэтому об этом тоже стоит поговорить.
История появления процессоров
Теперь, когда всё стало немного понятнее и слово процессор у вас не ассоциируется с системным блоком, давайте совершим небольшой экскурс в историю и посмотрим, как появились процессоры и что вообще способствовало их появлению.
Первые ЭВМ (электронно-вычислительные машины) появились в 40-х годах прошлого века. Изначально в их основе использовались лампы и примитивные радиоэлементы по типу резисторов и реле. Размер таких ЭВМ мог достигать нескольких квадратных метров.
На фотографии изображена первая ЭВМ — ENIAC. Ее вес составлял порядка 30 тон, и внутри располагалось 18000 электронных ламп.
Но прогресс не стоит на месте, и в 50-х годах громоздкие электронные лампы сменили транзисторы, которые, в свою очередь, в 60-х годах были вытеснены интегральными микросхемами, которые вмещали в себя уже тысячи таких транзисторов.
Всё изменилось в 1971 году, когда компания Intel представила первую 4-битную однокристальную микросхему Intel 4004. Именно Intel 4004 можно считать первым прародителем процессоров, нежели более ранние прототипы по типу электронных ламп и транзисторов. После Intel 4004 индустрия развития стала шагать семимильными шагами, и каждый год инженерам и конструкторам удавалось разработать более современный микропроцессор, который был мощнее и производительней своего приемника.
Мы умышленно не будем перечислять огромный перечень процессоров в силу того, что это уже получится полноценная, отдельная статья про историю процессоров. Поверьте, там есть о чём рассказывать.
В 1993 году компанией Intel был представлен первый полноценный десктоп процессор первого поколения P5, который впоследствии был переименован в Pentium.
Но не стоит полагать, что двигателем прогресса была только компания Intel, свой вклад в индустрию электроники и центральных процессоров внесли такие компании, как Motorola, Zilog, MOS Technology, Sinclair Research (ZX Spectrum). СССР тоже не отставали, и в 70-х годах Российские разработки в области ЭВМ вполне могли потягаться с зарубежными аналогами. Но в силу того, что СССР перенаправила силы из этой области в другие отраслевые технологии, было принято решение отказаться от собственного производства и впоследствии использовать сертифицированные импортные технологии.
Тактовая частота для многоядерного процессора
С выходом многоядерных процессоров в сети стали появляться различные способы вычисления суммарной тактовой частоты процессора. Многие наивно полагают, что четырехядерный процессор с частотой ядер 2,6ГГц в итоге работает как одноядерный процессор с частотой 4*2,6=10.4ГГц. А ведь это совсем не так.
Тактовая частота процессора определяет количество операций, которое может выполнить центральный процессор за единицу времени. Вычисляется тактовая частота процессора за счет перемножения базовой частоты (частоты шины) на множитель. На примере процессора Intel i7 5600U с множителем 20 и базовой частотой шины 133МГц получим тактовую частоту процессора 133*20=2,66ГГц. Тактовую частоту процессора можно повысить методом разгона, для этого можно поднять множитель или базовую частоту. В большинстве случаев повышают множитель в тех процессорах, в которых он разблокирован (серия с индексом «U» для процессоров Intel (например, 5557U) и процессоры серии FX unlocked от AMD).
Как же теперь определить общую производительность многоядерного (на примере 4-х ядерного) процессора, например, с тактовой частотой в 3ГГц? В 4-х ядерном процессоре каждое ядро работает с тактовой частотой 3ГГц. То есть каждое ядро может выполнить равное количество вычислений в единицу времени при условии, что все ядра будут загружены процессом вычисления. За загрузку ядер «работой» отвечает приложение, которое запущено на компьютере пользователя (будь то игра, или архиватор).
Нельзя сказать, что 4-х ядерный процессор с частотой 3ГГц будет иметь производительность на уровне одноядерного с частотой 12ГГц. Это совсем не так. Суть производительности многоядерных процессоров сводится к тому, что вычислительный процесс должен быть разбит на параллельные потоки, которые могут быть выполнены в одно и то же время различными ядрами процессора. У Intel параллельные потоки или многопоточность называется Hyper-Threading.
Если представить себе четыре ручья шириной и глубиной в один метр, скорость течения воды, в каждом из которых составляет 3 м/сек. Понятно, что скорость четырех ручьев не будет составлять 12 м/сек, а вот суммарная производительность всех четырех ручьев составит 12 куб. м. за секунду. То же самое можно отметить и в процессорах, при этом скорость потока воды – это тактовая частота, которая не умножается и не суммируется при увеличении количества ядер.
Преимущество многоядерных процессоров перед одноядерными заметно лишь в тех приложениях и играх, которые используют технологию разбивки процесса вычислений на несколько параллельных потоков. В таких приложениях скорость работы приложений значительно выше одноядерных. В то же время при работе старых приложений, использующих всего лишь один поток, производительность вычислений будет отграничена возможностью одного ядра. Читайте о том, как узнать количество ядер и частоту процессора.
Также некорректно сравнивать производительность двухядерного процессора с тактовой частотой 3ГГц и четырехядерного с тактовой частотой 2,1ГГц. Производительность во многом зависит от используемого приложения и способности этого приложения разделить вычисления на несколько потоков. При прочих равных условиях, когда приложение поддерживает многопоточность, производительность 4-х ядерного процессора с меньшей тактовой частотой будет выше производительности 2-х ядерного процессора с большей частотой. Однако, если приложение не способно разделять потоки, то двухядерный процессор будет более эффективным, так как имеет большую частоту.
Таким образом, производительность современных процессоров в большинстве случаев определяется программным обеспечением, которое способно загрузить все ядра процессора. Также следует понимать, что многопоточность все же предпочтительней одноядерных процессоров, так как все больше производителей ПО выпускают программные продукты, ориентированные именно на многоядерные процессоры. В этом направлении двигаются и разработчики компьютерных игр.
Управление частотой в Linux
Для управления частотой в операционной системе Linux используются политики CPU Governor. Они определяют как быстро будет изменятся частота при изменении нагрузки. Существует четыре политики:
- powersave — процессор работает на минимальной частоте;
- performance — процессор работает на максимальной частоте;
- ondemand — динамическое изменение частоты, при появлении нагрузки резко устанавливается самая высокая частота, а при снижении нагрузки частота медленно снижается;
- conservative — аналогично ondemand, только частота меняется более плавно;
- userspace — использовать частоту заданную пользователем;
- schedutil — изменение частоты на основе планировщика.
Самый выгодный в данном случае режим — это ondemand, частота повышается при необходимости и опускается если она не нужна. Чтобы посмотреть текущую политику управления частотой вам понадобится утилита cpupower, которую можно установить, установив этот пакет:
Затем посмотрите информацию о процессоре:
Как видите, сейчас для управления частотой используется политика ondemand. Для установки политики используйте команду frequency-set и опцию -g. Например, для performance:
Теперь частота гораздо выше, а используемая политика performance. Для того чтобы вручную менять частоту установите политику userspace:
Для установки максимальной частоты используйте опцию -u:
Для установки минимальной частоты — опцию -d:
А для изменения текущей частоты процессора — опцию -f:
Частота всё-равно будет немного колебаться, но эти колебания будут в пределах выбранного диапазона.
Все эти изменения сбрасываются после перезагрузки, поэтому если вы хотите чтобы всё сохранялось, придется создать скрипт с нужными командами и добавить его в автозагрузку.
Если вы любите пользоваться графическим интерфейсом вместо команд, вам понравится утилита cpupower-gui. Она позволяет настроить все необходимые параметры в графическом интерфейсе. Для её установки выполните:
Для установки самой последней версии выполните такие команды:
После завершения установки вы сможете найти программу в главном меню. Её окно выглядит вот так:
Утилита позволяет настроить максимальную и минимальную частоту, а также политику для каждого ядра по отдельности или для всех ядер вместе. Просто выберите нужные значения и нажмите кнопку Apply.
В отличие от консольных команд утилита позволяет устанавливать необходимые вам значения профиля и частоты при старте программы. Для этого в программе есть два профиля Balanced и Performance. Первый использует политику Powersave, а второй — Performance. Для того чтобы выбрать профиль по умолчанию надо отредактировать конфигурационный файл /etc/cpupower_gui.conf:
Измените значение параметра Profile на нужное и этот профиль будет выбираться по умолчанию при старте программы, останется только добавить её в автозагрузку. Кроме этих двух профилей можно создавать свои в папке /etc/cpupower_gui.d/. В этой папке уже лежит пример профиля, но рассматривать этот процесс подробнее мы не будем.