Канальный уровень в модели osi

Литература

  • А. Филимонов. Построение мультисервисных сетей Ethernet. — М.: BHV, 2007. ISBN 978-5-9775-0007-4.
  • Руководство по технологиям объединённых сетей. 4-е изд. — М.: Вильямс, 2005. ISBN 5-8459-0787-X.
  • Интернет ресурс: сервер :
    • Этот сервер, содержащий сведения по сетевым технологиям начал формироваться в 1997 году. Он частично создан на средства, выделенные по проектам РФФИ (99-07-90102 и 01-07-90069).
    • В основу материалов легли тексты книг:
      • «Протоколы и ресурсы Интернет» (Радио и связь, М. 1996),
      • «Сети Интернет. Архитектура и протоколы» (Сиринъ, М. 1998),
      • «Протоколы Интернет. Энциклопедия» («Горячая линия — Телеком», М. 2001, 1100 стр.),
      • «Протоколы Internet для электронной торговли» («Горячая линия — Телеком», М. 2003, 730 стр.),

которые базировались на двух курсах, читаемых студентам[значимость факта?] кафедр «Телекоммуникационные сети и системы» (факультет МФТИ ФРТК), «Интеграции и менеджмента» (факультет МФТИ ФОПФ) и «Информатики» (факультет НаноБиоИнфоКогни МФТИ) — «Каналы и сети передачи данных», «Протоколы Интернет».

4 Назначение канального уровня модели osi.

Канальный
уровень (channel layer) передачи данных
обеспечивает надежную доставку данных
через физический канал связи. У канального
уровня передачи данных есть собственная
схема адресации, которая отвечает за
физическое подключение и может передавать
фреймы на основании адресов канального
уровня передачи данных.

Традиционные
коммутаторы Ethernet коммутируют сетевой
трафик на основании адреса канального
уровня передачи данных (уровень 2).
Обычно коммутацию трафика на основании
адреса уровня 2 называют мостовым
соединением (bridging). Фактически, коммутатор
Ethernet — это не более чем быстродействующий
мост с несколькими интерфейсами.

Потоки данных через модель OSI

Для того чтобы считываемая человеком информация передавалась по сети с одного устройства на другое, данные должны перемещаться вниз по семи уровням модели OSI на передающем устройстве, а затем вверх по семи слоям на принимающей стороне. Например, кто-то хочет отправить письмо подруге. Отправитель составляет свое сообщение в приложении электронной почты на своем ноутбуке, а затем нажимает “отправить”. Его почтовое приложение передаст сообщение электронной почты на уровень приложения, который выберет протокол (SMTP) и передаст данные на уровень представления. Затем данные сжимаются и попадают на уровень сеанса, который инициализирует сеанс связи.

Затем данные попадут на транспортный уровень отправителя, где они будут сегментированы, затем эти сегменты будут разбиты на пакеты на сетевом уровне, которые будут разбиты еще дальше на фреймы на уровне канала передачи данных. Этот уровень доставит их на физический уровень, который преобразует данные в битовый поток 1s и 0s и отправит его через физический носитель, такой как кабель. Как только компьютер получателя получит битовый поток через физический носитель (например, wifi), данные будут проходить через ту же серию слоев на его устройстве, но в обратном порядке. Сначала физический уровень преобразует битовый поток из 1s и 0s в кадры, которые передаются на уровень канала передачи данных. Уровень канала передачи данных затем соберет кадры в пакеты для сетевого уровня. Сетевой уровень тогда сделает сегменты из пакетов для транспортного уровня, который соберет сегменты в одну часть данных.

Дальше данные поступают на уровень сеанса получателя, который передает данные на уровень представления, а затем завершает сеанс связи. Далее слой представления удаляет сжатие и передает необработанные данные на уровень приложения. Затем прикладной уровень будет передавать данные, читаемые человеком, вместе с почтовым программным обеспечением получателя, что позволит читать электронную почту отправителя на экране ноутбука.

Определения

Протоколы связи позволяют объекту на одном хосте взаимодействовать с соответствующим объектом на том же уровне на другом хосте. Определения услуг, такие как модель OSI, абстрактно описывают функциональные возможности, предоставляемые (N) -уровню уровнем (N-1), где N — один из семи уровней протоколов, работающих на локальном хосте.

На каждом уровне N , две сущности в сообщающихся устройств (слой N сверстников ) обмен блоков данных протокола (PDU) с помощью слоя N протокола . Каждый PDU содержит полезную нагрузку, называемую блоком служебных данных (SDU), а также связанные с протоколом заголовки или нижние колонтитулы.

Обработка данных двумя взаимодействующими OSI-совместимыми устройствами происходит следующим образом:

  1. Передаваемые данные состоят на самом верхнем уровне передающего устройства (уровень N ) в блок данных протокола ( PDU ).
  2. PDU передается к слою N-1 , где он известен как блок служебных данных ( SDU ).
  3. На слое N-1 СД является сцепляется с заголовком, в сноске, или оба, образуя слой N-1 PDU . Затем он передается на слой N-2 .
  4. Процесс продолжается до достижения самого нижнего уровня, с которого данные передаются на принимающее устройство.
  5. На принимающем устройстве данные передаются от самого низкого уровня к самому высокому в виде последовательности SDU , последовательно удаляясь из верхнего или нижнего колонтитула каждого уровня, пока не достигнут самого верхнего уровня, где потребляются последние данные.

Документы стандартов

Модель OSI была определена в ISO / IEC 7498, который состоит из следующих частей:

  • ISO / IEC 7498-1 Базовая модель
  • ISO / IEC 7498-2 Архитектура безопасности
  • ИСО / МЭК 7498-3 Именование и адресация
  • ISO / IEC 7498-4 Структура управления

ISO / IEC 7498-1 также опубликован как Рекомендация ITU-T X.200.

Исправление недостатков

Зачастую изъяны кровли по причине некачественного материала или неправильного монтажа определяются не сразу. Обычно это выясняется через несколько месяцев или после первых осадков. Устранить дефект можно во многих случаях, но для начала нужно понять его причину. Например, при вздутии битумной черепицы её нужно заменить. А если крыша сильно протекает, то потребуется капитальный ремонт и дополнительная гидроизоляция конструкции. В таких вопросах лучше всего довериться специалистам, у которых есть лицензия на проведение подобных работ. Рекомендации мастера будут наиболее полными и объективными.

Сетевой уровень

Сетевой уровень (network layer) – этот уровень определяет путь, по которому данные будут переданы. И, между прочим, это третий уровень Сетевой модели OSI, а ведь существуют такие устройства, которые как раз и называют устройствами третьего уровня – маршрутизаторы.

Все мы слышали об IP-адресе, вот это и осуществляет протокол IP (Internet Protocol). IP-адрес – это логический адрес в сети.

На этом уровне достаточно много протоколов и все эти протоколы мы разберем более подробно позже, в отдельных статьях и на примерах. Сейчас же только перечислю несколько популярных.

Как об IP-адресе все слышали и о команде ping – это работает протокол ICMP.

Те самые маршрутизаторы (с которыми мы и будет работать в дальнейшем) используют протоколы этого уровня для маршрутизации пакетов (RIP, EIGRP, OSPF).

Вся вторая часть курса CCNA (Exploration 2) о маршрутизации.

Модель TCP IP

Модель TCP/IP немного отличается от модели OSI, если говорить конкретней в данной модели объединили некоторые уровни модели OSI и их здесь всего 4:

  • Прикладной;
  • Транспортный;
  • Сетевой;
  • Канальный.

На картинке представлено отличие двух моделей, а также еще раз показано на каких уровнях работают всем известные протоколы.

Говорить о сетевой модели OSI и конкретно про взаимодействие компьютеров в сети можно долго и в рамках одной статьи это не уместить, да и будет немного не понятно, поэтому здесь я попытался представить как бы основу этой модели и описание всех уровней. Главное понимать, что все это действительно так и файл, который Вы отправили по сети проходит просто «огромный» путь, перед тем как попасть к конечному пользователю, но это происходит на столько быстро, что Вы этого не замечаете, во многом благодаря развитым сетевым технологиям.

Надеюсь все это, Вам поможет понимать взаимодействие сетей.

Нравится1Не нравится

Соответствие модели OSI и других моделей сетевого взаимодействия

Поскольку наиболее востребованными и практически используемыми стали протоколы (например TCP/IP), разработанные с использованием других моделей сетевого взаимодействия, далее необходимо описать возможное включение отдельных протоколов других моделей в различные уровни модели OSI.

Семейство TCP/IP

Семейство TCP/IP имеет три транспортных протокола: TCP, полностью соответствующий OSI, обеспечивающий проверку получения данных; UDP, отвечающий транспортному уровню только наличием порта, обеспечивающий обмен датаграммами между приложениями, не гарантирующий получения данных; и SCTP, разработанный для устранения некоторых недостатков TCP, в который добавлены некоторые новшества. В семействе TCP/IP есть ещё около двухсот протоколов, самым известным из которых является служебный протокол ICMP, используемый для внутренних нужд обеспечения работы; остальные также не являются транспортными протоколами.

Семейство IPX/SPX

В семействе IPX/SPX порты появляются в протоколе сетевого уровня IPX, обеспечивая обмен датаграммами между приложениями (операционная система резервирует часть сокетов для себя). Протокол SPX, в свою очередь, дополняет IPX всеми остальными возможностями транспортного уровня в полном соответствии с OSI.

В качестве адреса хоста ICX использует идентификатор, образованный из четырёхбайтного номера сети (назначаемого маршрутизаторами) и MAC-адреса сетевого адаптера.

Работа с кадрами

Физический уровень предназначен для передачи потока бит по КС. А на канальном уровне необходимо передавать не отдельные биты, а целые сообщения. Задача №1 для канального уровня, выделить сообщения из потока бит, которые приходят по среде передачи данных. 

Формирование кадра

Например, есть два ноутбука Хост 1 и Хост 2. И на картинке ниже есть три уровня, сетевой, канальный и физический. 

Канальный уровень получает информацию от сетевого и добавляет к нему заголовок и концевик. И именно это сообщение, выделенное красным, заголовок канального уровня, пакет с сетевого уровня и концевик  канального уровня и является фреймом. Такое сообщение отправляется через физический уровень по среде передачи данных и поступает на канальный уровень принимающего уровня. 

Принимающее устройство читает заголовок и концевик, извлекает пакет сетевого уровня и передает вышестоящему сетевому уровню для последующей обработки. 

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Общая характеристика модели OSI

https://youtube.com/watch?v=DcV3HY6lFP4%3F

В связи с затянувшейся разработкой протоколов OSI, в настоящее время основным используемым стеком протоколов является TCP/IP, разработанный ещё до принятия модели OSI и вне связи с ней.

К концу 70-х годов в мире уже существовало большое количество фирменных стеков коммуникационных протоколов, среди которых можно назвать, например, такие популярные стеки, как DECnet, TCP/IP и SNA. Подобное разнообразие средств межсетевого взаимодействия вывело на первый план проблему несовместимости устройств, использующих разные протоколы. Одним из путей разрешения этой проблемы в то время виделся всеобщий переход на единый, общий для всех систем стек протоколов, созданный с учетом недостатков уже существующих стеков. Такой академический подход к созданию нового стека начался с разработки модели OSI и занял семь лет (с 1977 по 1984 год). Назначение модели OSI состоит в обобщенном представлении средств сетевого взаимодействия. Она разрабатывалась в качестве своего рода универсального языка сетевых специалистов, именно поэтому её называют справочной моделью.В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представления, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень имеет дело с совершенно определенным аспектом взаимодействия сетевых устройств.

Приложения могут реализовывать собственные протоколы взаимодействия, используя для этих целей многоуровневую совокупность системных средств. Именно для этого в распоряжение программистов предоставляется прикладной программный интерфейс (Application Program Interface, API). В соответствии с идеальной схемой модели OSI приложение может обращаться с запросами только к самому верхнему уровню — прикладному, однако на практике многие стеки коммуникационных протоколов предоставляют возможность программистам напрямую обращаться к сервисам, или службам, расположенных ниже уровней. Например, некоторые СУБД имеют встроенные средства удаленного доступа к файлам. В этом случае приложение, выполняя доступ к удаленным ресурсам, не использует системную файловую службу; оно обходит верхние уровни модели OSI и обращается непосредственно к ответственным за транспортировку сообщений по сети системным средствам, которые располагаются на нижних уровнях модели OSI. Итак, пусть приложение узла А хочет взаимодействовать с приложением узла В. Для этого приложение А обращается с запросом к прикладному уровню, например к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата. Но для того, чтобы доставить эту информацию по назначению, предстоит решить еще много задач, ответственность за которые несут нижележащие уровни. После формирования сообщения прикладной уровень направляет его вниз по стеку уровню представления. Протокол уровня представления на основании информации, полученной из заголовка сообщения прикладного уровня, выполняет требуемые действия и добавляет к сообщению собственную служебную информацию — заголовок уровня представления, в котором содержатся указания для протокола уровня представления машины-адресата. Полученное в результате сообщение передается вниз сеансовому уровню, который, в свою очередь, добавляет свой заголовок и т. д. (Некоторые реализации протоколов помещают служебную информацию не только в начале сообщения в виде заголовка, но и в конце в виде так называемого концевика.) Наконец, сообщение достигает нижнего, физического, уровня, который, собственно, и передает его по линиям связи машине-адресату. К этому моменту сообщение «обрастает» заголовками всех уровней.

Физический уровень помещает сообщение на физический выходной интерфейс компьютера 1, и оно начинает своё «путешествие» по сети (до этого момента сообщение передавалось от одного уровню другому в пределах компьютера 1). Когда сообщение по сети поступает на входной интерфейс компьютера 2, оно принимается его физическим уровнем и последовательно перемещается вверх с уровня на уровень. Каждый уровень анализирует и обрабатывает заголовок своего уровня, выполняя соответствующие функции, а затем удаляет этот заголовок и передает сообщение вышележащему уровню. Как видно из описания, протокольные сущности одного уровня не общаются между собой непосредственно, в этом общении всегда участвуют посредники — средства протоколов нижележащих уровней. И только физические уровни различных узлов взаимодействуют непосредственно.

Функции сеансового уровня

Сеансовые уровень выполняет задачи организации и проведения диалога между прикладными процессами

1.  Установление сеансового соединения

2.  Обмен данными

3.  Управление взаимодействием

4.  Синхронизация сеансового соединения

5.  Извещение об исключительных ситуациях

6.  Отображение сеансовго соединения на транспортное соединение

7.  Завершение сетевого соединения

Функции транспортного уровня.

Транспортный уровень выполняет сквозные соединения между прикладными процессами, прикладными объектами. При создании транспортного уровня должна быть создана его полная независимость от характера взаимодействующих прикладных процессов

1.  Установление и разъединение транспортных соединений

2.  Обеспечение взаимодействия сетевых соединений с транспортными

3.  Управление последовательностями и обеспечение целостности блоков данных, передаваемых через транспортные соединения

4.  Обнаружение ошибок, их частичное исправление и передача сообщений о неисправленных ошибках 5.Восстановление соединений после появления неисправностей

9.Сброс блоков транспортных соединений при тупиковых ситуациях

17 Сетевой уровень

Сетевой уровень

Сетевой уровень — это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным «подсетям», которые могут находиться в разных географических пунктах. В данном случае «подсеть» — это по сути независимый сетевой кабель (иногда называемый сегментом).

Т. к. две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей. Традиционные протоколы сетевого уровня передают информацию вдоль этих маршрутов.

Уровни управления:

сетевой — обеспечивает передачу данных через базовую СПД (сеть передачи данных). Управление сетью, реализуемое на этом уровне, состоит в выборе маршрута передачи данных по линиям, связывающим узлы сети.

Сетевой уровень

Это уровень модели OSI, отвечающий за маршруты, по которым идет передача данных. Устройства, которые работают на этой ступени, называются маршрутизаторами. Данные на этом уровне передаются пакетами. На канальном уровне устройство определялось при помощи физического адреса (MAC), а на сетевом начинают фигурировать IP-адреса — логический адрес какого-либо устройства сети, интерфейса.

Рассмотрим функции сетевого уровня модели OSI.

Основная задача данной ступени — это обеспечение передачи данных между оконечными устройствами.

Для этого обеспечивается назначение уникального адреса для всех этих устройств, инкапсуляция (снабжение данных соответствующим заголовком или метками, посредством чего и создается основная единица нагрузки — пакет).

Далее пакет необходимо маршрутизировать, а именно доставить к точке назначения. Маршрут может задаваться из большого количества промежуточных точек, которые называются хопами.

Как только пакет достигает точки назначения, происходит процесс декапсуляции — конечный узел исследует полученные данные, чтобы убедиться, что пакет доставлен туда, куда требовалось, и передается на следующий уровень.

Рассмотрим список протоколов сетевого уровня модели OSI. Это упомянутый раньше IP, который входит в стек TCP/IP, ICMP (отвечает за передачу управляющих и сервисных данных), IGMP (групповая передача данных, мультикаст), BGP (осуществление динамической маршрутизации) и многие другие.

Транспортный уровень

Протоколы этого уровня служат для того, чтобы обеспечить надежность передачи сведений от отправляющего устройства до принимающего, отвечают непосредственно за доставку информации.

Основная задача транспортного уровня — чтобы пакеты данных были отправлены и получены без ошибок, отсутствовали потери, соблюдалась последовательность передачи.

Этот уровень работает с целыми блоками данных.

К примеру, требуется передать некий файл по электронной почте. Для того чтобы до получателя дошла корректная информация, требуется соблюдение точной структуры и последовательности передачи данных, ведь если будет утерян хотя бы один бит при загрузке файла, его невозможно будет открыть.

Можно выделить два основных протокола, которые работают на этом уровне: TCP и UDP.

UDP отправляет данные, не запрашивая от оконечного устройства ответ о доставке, и не повторяет отправку в случае неудачи. TCP же, наоборот, устанавливает соединение и требует ответа о доставке данных, если информация не доходит, повторяет отправление.

Транспортный уровень

Транспортный уровень (transport layer) – этот уровень обеспечивает надёжность передачи данных от отправителя к получателю. На самом деле всё очень просто, например вы общаетесь с помощью веб-камеры со своим другом или преподавателем. Нужна ли здесь надежная доставка каждого бита переданного изображения? Конечно нет, если потеряется несколько битов из потокового видео Вы даже этого не заметите, даже картинка не изменится (м.б. изменится цвет одного пикселя из 900000 пикселей, который промелькнет со скоростью 24 кадра в секунду).

А теперь приведем такой пример: Вам друг пересылает (например, через почту) в архиве важную информацию или программу. Вы скачиваете себе на компьютер этот архив. Вот здесь надёжность нужна 100%, т.к. если пару бит при закачке архива потеряются – Вы не сможете затем его разархивировать, т.е. извлечь необходимые данные. Или представьте себе отправку пароля на сервер, и в пути один бит потерялся – пароль уже потеряет свой вид и значение изменится.

Таким образом, когда мы смотрим видеоролики в интернете, иногда мы видим некоторые артефакты, задержки, шумы и т.п. А когда мы читаем текст с веб-страницы – потеря (или скжение) букв не допустима, и когда скачиваем программы – тоже все проходит без ошибок.

На этом уровне я выделю два протокола: UDP и TCP. UDP протокол (User Datagram Protocol) передает данные без установления соединения, не подтверждает доставку данных и не делает повторы. TCP протокол (Transmission Control Protocol), который перед передачей устанавливает соединение, подтверждает доставку данных, при необходимости делает повтор, гарантирует целостность и правильную последовательность загружаемых данных.

Следовательно, для музыки, видео, видеоконференций и звонков используем UDP (передаем данные без проверки и без задержек), а для текста, программ, паролей, архивов и т.п. – TCP (передача данных с подтверждением о получении, затрачивается больше времени).

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Архитектурное решение

Назначение TCP

TCP/IP — это средство для обмена информацией между компьютерами, объединенными в сеть. Не имеет значения, составляют ли они часть одной и той же сети или подключены к отдельным сетям. Не играет роли и то, что один из них может быть компьютером Cray, а другой Macintosh. TCP/IP — это не зависящий от платформы стандарт, который перекидывает мосты через пропасть, лежащую между разнородными компьютерами, операционными системами и сетями. Это протокол, который глобально управляет Internet, и в значительной мере благодаря сети TCP/IP завоевал свою популярность.

Основными протоколами стека, давшими ему название, являются протоколы IР и ТСР. Эти протоколы в терминологии модели 051 относятся к сетевому и транспортному уровням соответственно. IР обеспечивает продвижение пакета по составной сети, а ТСР гарантирует надежность его доставки.

Причина, по которой TCP/IP столь важен сегодня, заключается в том, что он позволяет самостоятельным сетям подключаться к Internet или объединяться для создания частных интрасетей. Вычислительные сети, составляющие интрасеть, физически подключаются через устройства, называемые маршрутизаторами или IP-маршрутизаторами.

Маршрутизатор — это компьютер, который передает пакеты данных из одной сети в другую. В интрасети, работающей на основе TCP/IP, информация передается в виде дискретных блоков, называемых IP-пакетами (IP packets) или IP-дейтаграммами (IP datagrams). Благодаря программному обеспечению TCP/IP все компьютеры, подключенные к вычислительной сети, становятся «близкими родственниками». По существу оно скрывает маршрутизаторы и базовую архитектуру сетей и делает так, что все это выглядит как одна большая сеть. Точно так же, как подключения к сети Ethernet распознаются по 48-разрядным идентификаторам Ethernet, подключения к интрасети идентифицируются 32-разрядными IP-адресами, которые мы выражаем в форме десятичных чисел, разделенных точками (например, 128.10.2.3). Взяв IP-адрес удаленного компьютера, компьютер в интрасети или в Internet может отправить данные на него, как будто они составляют часть одной и той же физической сети.

TCP/IP дает решение проблемы данными между двумя компьютерами, подключенными к одной и той же интрасети, но принадлежащими различным физическим сетям. Решение состоит из нескольких частей, причем каждый член семейства протоколов TCP/IP вносит свою лепту в общее дело. IP — самый фундаментальный протокол из комплекта TCP/IP — передает IP-дейтаграммы по интрасети и выполняет важную функцию, называемую маршрутизацией, по сути дела это выбор маршрута, по которому дейтаграмма будет следовать из пункта А в пункт B, и использование маршрутизаторов для «прыжков» между сетями.

Особенности TCP

Поскольку стек ТСР/IР изначально создавался для глобальной сети Internet он имеет много особенностей, дающих ему преимущество перед другими протоколами, когда речь заходит о построении сетей, включающих глобальные связи. В частности, очень полезным свойством, делающим возможным применение этого протокола в больших сетях, является его способность фрагментировать пакеты. Действительно, большая составная сеть часто состоит из сетей, построенных на совершенно разных принципах. В каждой из этих сетей может быть установлена собственная величина максимальной длины единицы передаваемых данных (кадра). В таком случае при переходе из одной сети, имеющей большую максимальную длину, в сеть с меньшей максимальной длиной может возникнуть необходимость деления передаваемого кадра на несколько частей. Протокол IP стека ТСР/IР эффективно решает эту задачу.

Другой особенностью технологии ТСР/IР является гибкая система адресации, позволяющая более просто по сравнению с другими протоколами аналогичного назначения включать в интерсеть сети других технологий. Это свойство также способствует применению стека ТСР/IР для построения больших гетерогенных сетей.

В стеке ТСР/ IР очень экономно используются возможности широковещательных рассылок. Это свойство совершенно необходимо при работе на медленных каналах связи, характерных для территориальных сетей.

Стек протоколов, снова канальный уровень

О канальном уровне модели TCP/IP мы рассказали меньше всего, давайте вернемся еще раз к началу, чтобы рассмотреть инкапсуляцию протоколов и, что значит «стек».

Большинству пользователей знаком протокол Ethernet. В сети, по стандарту Ethernet, устройства отправителя и адресата имеют определенный MAC-адрес — идентификатор «железа». MAC-адрес инкапсулируется в Ethernet вместе с типом передаваемых данных и самими данными. Фрагмент данных, составленных в соответствии с Ethernet называется фреймом или кадром (frame).

MAC-адрес каждого устройства уникален и двух «железок» с одинаковым адресом не должно существовать, хотя порой такое случается, что приводит к сетевым проблемам. Таким образом, при получении сетевой адаптер занимается извлечением полученной информации из кадра и ее дальнейшей обработкой.

После ознакомления с уровневой структурой модели становится понятно, что информация не может передаваться между двумя компьютерами напрямую. Сначала кадры передаются на межсетевой уровень, где компьютеру отправителя и компьютеру получателя назначается уникальный IP. После чего, на транспортном уровне, информация передается в виде TCP-фреймов либо UDP-датаграмм.

На каждом этапе, подобно снежному кому, к уже имеющейся информации добавляется служебная информация, например, порт на прикладном уровне, необходимый для идентификации сетевого приложения. Добавление служебной информации к основной обеспечивают разные протоколы — сначала Ethernet, поверх него IP, еще выше TCP, над ним порт, означающий приложение с делегированным ему протоколом. Такая вложенность называется стеком, названным TCP/IP по двум главным протоколам модели.

Не выключайте компьютер

Пример переноса данных в IP-сети

На примере IP-сети (рис. 2) покажем перенос данных оконечной станции А локальной вычислительной сети (подсети) Ethernet в оконечную станцию В сети (подсети) АТМ. Как видно из рисунка в эту составную сеть еще входит сеть (подсеть) Frame Relay. В основу приведенного упрощенного описания положен пример межсетевого взаимодействия сетей Ethernet и АТМ, приведенный в работе. Дополнительно в эту составную сеть введена сеть (подсеть) Frame Relay. Принцип маршрутизации и краткое описание протоколов маршрутизации в сети Интернет приведены в следующей главе. Для того, чтобы технология TCP/IP могла решать задачу объединения сетей, ей необходима собственная глобальная система адресации, не зависящая от способов адресации узлов в отдельных подсетях. Таким адресом является IP-адрес, состоящий из адреса подсети (префикса) и адреса оконечного устройства (хоста). Приведем пример адресации подсети и хоста. IP-адрес 200.15.45.126/25 означает, что 25 старших бит из выделенных 4-х байт под адресацию являются адресом подсети, а оставшиеся 7 бит означают адрес хоста в этой сети.

Как видно из предыдущих глав, глобальные сети Frame Relay и АТМ имеют различные системы нумерации, которые отличаются от системы нумерации локальной вычислительной сети (ЛВС) технологии Ethernet. Каждый компьютер Ethernet имеет уникальный физический адрес, состоящий из 48 бит. Этот адрес называется МАС-адресом и относится к канальному уровню — управлению доступом к среде MAC (Media Access Control). Для организации межсетевого взаимодействия подсетей различной технологии и адресации используются маршрутизаторы, включающие IP-пакеты. В состав этих пакетов входят глобальные IP-адреса.
Каждый интерфейс маршрутизатора IP-сети и оконечного устройства включает два адреса – локальный адрес оконечного устройства подсети и IP-адрес.

Рис. 2. Пример взаимодействия двух устройств

Рассмотрим продвижение IP-пакета в сети (рис. 2).

  1. Пользователь компьютера А сети Ethernet, имеющий IP-адрес (IP-адрес 1), обращается по протоколу передачи файла FTP к компьютеру В, подключенному к сети АТМ и имеющий IP-адрес (IP-адрес 6).
  2. Компьютер А формирует кадр Ethernet для отправки IP-пакета. По таблице маршрутизации в компьютере А на основании IP-адресов А и В определятся маршрутизатор М1 и входящий интерфейс для передачи этого IP-пакета. При этом становится известен IP-адрес интерфейса маршрутизатора М1(IP-адрес 2).
  3. Компьютер А отправляет по сети Ethernet IP-пакет, инкапсулированный в кадр Ethernet и включающий следующие поля (рис. 3).

    Рис. 3. Кадр Ethernet с инкапсулированным в него IP пакетом
    МАС-адрес в заголовке кадра Ethernet занимает 6 байт. С помощью протокола разрешения адресов ARP (Address Resolution Protocol) определяются локальные адреса МАС-адрес 1 и МАС-адрес 2 по известным IP-адресам (IP-адрес 1 и IP-адрес 2).

  4. Кадр принимается на входном интерфейсе маршрутизатора М1 в соответствии с протоколом Ethernet. Протокол Ethernet извлекает из принятого кадра IP-пакет, инкапсулированный в него. Из этого IP-пакета маршрутизатор М1 извлекает IP-адрес назначения (IP-адрес 6).
  5. С помощью таблицы маршрутизации в М1 определяются IP-адреса выходного интерфейса из М1 и входного интерфейса маршрутизатора М2, т.е. IP-адрес 3 и IP-адрес 4.
  6. По глобальным адресам IP-адрес 3 и IP-адрес 4 определяются соответственно локальные адреса подсети Frame Relay FR-адрес 1 и FR-адрес 2.
  7. IP-пакет передается по виртуальному каналу сети Frame Relay, используя при этом локальные адреса FR-адрес 1 и FR-адрес 2. Этот IP-пакет инкапсулирован в кадр FR.
  8. Кадр FR принимается на входном интерфейсе маршрутизатора М2 в соответствии с протоколом сети Frame Relay. Извлекается принятый IP-пакет, сбросив заголовок принятого кадра FR. Извлекается IP-адрес назначения (IP-адрес 6).
  9. С помощью таблицы маршрутизации в М2 определяется IP-адреса выходного интерфейса (IP-адрес 5) маршрутизатора М2 и IP-адрес назначения (IP-адрес 6). При этом глобальным адресам определяются соответствующие им локальные адреса АТМ-адрес 1 и АТМ-адрес 2. IP-пакет передается по виртуальному каналу сети АТМ, используя эти локальные адреса.
  10. В результате IP-пакет из компьютера А поступает в компьютер В.

Заключение

В этой статье мы изложили базовую информацию для ознакомления с сетевой моделью OSI. Это те основы, которые просто необходимо знать каждому, кто работает в сфере IT, для понимания того, как устроена система передачи данных.

В этой статье на уровне сетевой модели OSI для «чайников» мы постарались простым языком объяснить, как передача данных реализуется, а главное — как устроена система взаимодействия сетевого оборудования на различных уровнях.

О каждом из протоколов можно рассказать очень и очень много. Хочется надеяться, что эта статья вызовет интерес к дальнейшему ознакомлению с этой интересной темой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector