Какие бывают базы данных

Понятие БД и классификация БД

Сегодня системы баз данных имеют важное значение во многих областях науки, техники и пользовательского применения. Любой тип программного обеспечения, разработанный для компаний, основан на надежных БД с большим количеством опций и инструментов для системных администраторов

Безопасность данных также приобретает все большее значение, в электронных БД хранятся и шифруются пароли, личные данные и даже электронные валюты.

Современная финансовая система представляет собой не что иное, как сеть баз данных, в которой большая часть денежных сумм существует только в виде электронных единиц информации, защита которых с помощью безопасных БД является одной из основных задач финансовых учреждений.

В зависимости от изменчивости базы данных ее тип относят по классификации БД к статическому или динамическому.

Функции статических БД:

  1. Позволяют только чтение данных, исключая модификацию.
  2. Применяются для биографий и исторических фактов или сценариев, к которым можно обращаться для исследования, без необходимости изменения содержания.
  3. Они безопасны и просты в использовании при подключении к сети.

Функции динамических БД:

  1. Они обладают понятием самоуправления.
  2. Могут быть связаны с динамическими сетями.
  3. Эта структурная ассоциация позволяет хранить и обновлять информацию базы данных.
  4. Использует HTML в качестве языка связи между сетью и динамической БД.
  5. Наиболее используемые языки для создания динамических сетей, связанных с BBDD: Perl, CGI, PHP, JSP и ASP.

Основными СУБД, которые работают с динамическими веб-страницами, являются PostgresQL, MySQL, Oracle и Microsoft SQL.

Для того чтобы понять, какие существуют варианты классификации БД, используемых в научной и образовательной среде, рассматривают:

  • библиографические;
  • документальные;
  • специализированные;
  • справочники.

Функциональные возможности библиографических БД:

  1. Связаны со старыми записями, которые содержат информацию о местонахождении книги или документа.
  2. Не содержат полный текст, только ссылку.
  3. Благодаря таким форматам, как PDF, позволяет получать доступ к оригинальным статьям, на которые есть ссылки.
  4. С развитием технологий включаются ссылки из других СМИ.

Особенности специализированных БД:

  1. Содержат точную информацию и ориентированы на конкретную тему.
  2. Используются в академической и научной среде.
  3. Для некоторых случаев не рассматриваются как правильные BBDD: например, телефонный справочник, список контактов компании или международной компании.

Что такое базы данных (БД) и зачем они нужны

База данных (БД) — это программа, которая позволяет хранить и обрабатывать информацию в структурированном виде.
БД это отдельная независимая программа, которая не входит в состав языка программирования. В базе данных можно сохранять любую информацию, чтобы позже получать к ней доступ.

Пример использования

Базы данных нужны для хранения информации. Чтобы получить полное понимание необходимости использования БД в современном веб-программировании, необходимо ответить на три вопроса:

  1. Какую информацию и зачем мы храним?
  2. В каком виде и как надо хранить эту информацию?
  3. Как и каким способом можно получить доступ к этой информации?

Предположим, вы решили сделать сайт, где каждый пользователь может вести личный дневник наблюдения за погодой в своем городе.
Такой сайт должен иметь как минимум одну форму ввода со следующими полями: город, дата, температура, облачность, погодное явление, и так далее.
Каждый день наблюдатель записывает показания погоды в эту форму, чтобы когда-нибудь в будущем вернуться на сайт и посмотреть, какая была погода месяц или даже год назад.
Из этого примера следует, что программист каким-то образом должен сохранять данные из формы для дальнейшего использования.

Кроме обычного просмотра дневника погоды за месяц в виде таблицы, можно сделать и более сложный проект.
Например, чтобы электронный дневник чем-то качественно отличался от своего бумажного аналога, будет неплохо добавить туда возможности для простого анализа: показать какой день был самым холодным в ноябре или какой продолжительности была самая длинная серия пасмурных дней.
Получается, что данные надо не просто как-то хранить, но и иметь возможность их обрабатывать и анализировать.
Именно для этих целей и существуют базы данных.

Сверхбольшие базы данных

Сверхбольшая база данных (англ. Very Large Database, VLDB) — это база данных, которая занимает чрезвычайно большой объём на устройстве физического хранения. Термин подразумевает максимально возможные объёмы БД, которые определяются последними достижениями в технологиях физического хранения данных и в технологиях программного оперирования данными.

Количественное определение понятия «чрезвычайно большой объём» меняется во времени. Так, в 1997 году самой большой в мире была текстовая база данных Knight Ridder’s DIALOG объёмом 7 терабайт. В 2001 году самой большой считалась база данных объёмом 10,5 терабайт, в 2003 году — объёмом 25 терабайт. В 2005 году самыми крупными в мире считались базы данных с объёмом хранилища порядка сотни терабайт. В 2006 году поисковая машина Google использовала базу данных объёмом 850 терабайт.

К 2010 году считалось, что объём сверхбольшой базы данных должен измеряться по меньшей мере петабайтами.

В 2011 году компания хранила данные в кластере из 2 тысяч узлов суммарной ёмкостью 21 петабайт; к концу 2012 года объём данных Facebook достиг 100 петабайт, а в 2014 году — 300 петабайт.

К 2014 году по косвенным оценкам компания хранила на своих серверах до 10—15 эксабайт данных в совокупности.

По некоторым оценкам, к 2025 году генетики будут располагать данными о геномах от 100 миллионов до 2 миллиардов человек, и для хранения подобного объёма данных потребуется от 2 до 40 эксабайт.

В целом, по оценкам компании IDC, суммарный объём данных «цифровой вселенной» удваивается каждые два года и изменится от 4,4 зеттабайта в 2013 году до 44 зеттабайт в 2020 году.

Исследования в области хранения и обработки сверхбольших баз данных VLDB всегда находятся на острие теории и практики баз данных. В частности, с 1975 года проходит ежегодная конференция International Conference on Very Large Data Bases («Международная конференция по сверхбольшим базам данных»). Большинство исследований проводится под эгидой некоммерческой организации VLDB Endowment (Фонд целевого капитала «VLDB»), которая обеспечивает продвижение научных работ и обмен информацией в области сверхбольших БД и смежных областях.

Классификация СУБД

По модели данных

По типу управляемой базы данных СУБД разделяются на:

§  Иерархические (система FAT, Серверы каталогов)

§  Сетевые (интернет)

§  Реляционные (MS Access)

§  Объектно-реляционные ( Oracle Database, Microsoft SQL Server 2005, PostgreSQL)

По архитектуре организации хранения данных

§  локальные СУБД (все части локальной СУБД размещаются на одном компьютере)

§  распределенные СУБД (части СУБД могут размещаться на двух и более компьютерах)

По способу доступа к БД

§  Файл-серверные

В файл-серверных СУБД файлы данных располагаются централизованно на файл-сервере. Ядро СУБД располагается на каждом клиентском компьютере. Доступ к данным осуществляется через локальную сеть. Синхронизация чтений и обновлений осуществляется посредством файловых блокировок. Преимуществом этой архитектуры является низкая нагрузка на ЦП сервера, а недостатком — высокая загрузка локальной сети.

На данный момент файл-серверные СУБД считаются устаревшими.

Примеры: Microsoft Access (Microsoft Access — реляционная СУБД корпорации Microsoft. Имеет широкий спектр функций, включая связанные запросы, сортировку по разным полям, связь с внешними таблицами и базами данных. Благодаря встроенному языку VBA, в самом Access можно писать приложения, работающие с базами данных. Основные компоненты MS Access:просмотр таблиц; построитель экранных форм; построитель SQL-запросов (язык SQL в MS Access не соответствует стандарту ANSI); построитель отчётов, выводимых на печать.), Borland Paradox.

§  Клиент-серверные

Такие СУБД состоят из клиентской части (которая входит в состав прикладной программы) и сервера. Клиент-серверные СУБД, в отличие от файл-серверных, обеспечивают разграничение доступа между пользователями и мало загружают сеть и клиентские машины. Сервер является внешней по отношению к клиенту программой, и по надобности его можно заменить другим. Недостаток клиент-серверных СУБД в самом факте существования сервера (что плохо для локальных программ — в них удобнее встраиваемые СУБД) и больших вычислительных ресурсах, потребляемых сервером.

Примеры: Firebird, Interbase, MS SQL Server, Sybase, Oracle, PostgreSQL, MySQL, ЛИНТЕР.

§  Встраиваемые

Примеры: OpenEdge, SQLite, BerkeleyDB, один из вариантов Firebird, один из вариантов MySQL, Sav Zigzag, Microsoft SQL Server Compact, ЛИНТЕР.

6. Виды нормализации (1-3-нормальная форма).

Нормальная форма(НФ) — свойство отношения в реляционной модели данных, характеризующее его с точки зрения избыточности, которая потенциально может привести к логически ошибочным результатам выборки или изменения данных. Нормальная форма определяется как совокупность требований, которым должно удовлетворять отношение.

Процесс преобразования базы данных к виду, отвечающему нормальным формам, называется нормализацией. Нормализация предназначена для приведения структуры базы данных к виду, обеспечивающему минимальную избыточность, то есть нормализация не имеет целью уменьшение или увеличение производительности работы или же уменьшение или увеличение объёма БД. Конечной целью нормализации является уменьшение потенциальной противоречивости хранимой в БД информации.

Устранение избыточности производится, как правило, за счёт отношений таким образом, чтобы в каждом отношении хранились только первичные факты (то есть факты, не выводимые из других хранимых фактов).

Всего в реляционной теории насчитывается 6 НФ:

1.  1-я НФ (обычно обозначается также 1НФ).

2.  2НФ.

3.  3НФ.

4.  НФ Бойса-Кодда (НФБК).

5.  4НФ.

6.  5НФ.

1НФ

Таблица находится в первой нормальной форме, если каждый её атрибут атомарен. Под выражением «атрибут атомарен» понимается, что атрибут может содержать только одно значение. Таким образом, не существует 1NF таблицы, в полях которых могут храниться списки значений. Для приведения таблицы к 1NF обычно требуется разбить таблицу на несколько отдельных таблиц.

Замечание: в реляционной модели отношение всегда находится в 1 (или более высокой) нормальной форме в том смысле, что иные отношения не рассматриваются в реляционной модели. То есть само определение понятия отношение заведомо подразумевает наличие 1NF.

Свойства сущностей

Сущности имеют свойства, которые называются атрибутами (attribute).

Например, атрибуты:

  • сущности ФАКУЛЬТЕТ:
    • название;
    • год создания;
  • сущности ГРУППА:
  • сущности СТУДЕНТ:
    • фамилия;
    • имя;
    • отчество;
    • номер студенческого билета;
    • номер паспорта;
    • год рождения;
    • месяц рождения;
    • день рождения.

Любой атрибут принимает значения из некоторого множества допустимых значений, называемого доменом атрибута.

Например:

  • домен атрибута «год создания»: целые положительные числа;
  • домен атрибута «имя»: строка, не содержащая пробелов;
  • домен атрибута «год рождения»: целые положительные числа;
  • домен атрибута «месяц рождения»: январь, февраль, март … декабрь;
  • домен атрибута «день рождения»: целые числа от 1 до 31.

История

История возникновения и развития технологий баз данных может рассматриваться как в широком, так и в узком аспекте.

В широком смысле понятие истории баз данных обобщается до истории любых средств, с помощью которых человечество хранило и обрабатывало данные. В таком контексте упоминаются, например, средства учёта царской казны и налогов в древнем Шумере (4000 г. до н. э.), узелковая письменность инков — кипу, клинописи, содержащие документы Ассирийского царства и т. п. Следует помнить, что недостатком этого подхода является размывание понятия «база данных» и фактическое его слияние с понятиями «архив» и даже «письменность».

История баз данных в узком смысле рассматривает базы данных в традиционном (современном) понимании. Эта история начинается с 1955 года, когда появилось программируемое оборудование обработки записей. Программное обеспечение этого времени поддерживало модель обработки записей на основе файлов. Для хранения данных использовались перфокарты.

Оперативные сетевые базы данных появились в середине 1960-х. Операции над оперативными базами данных обрабатывались в интерактивном режиме с помощью терминалов. Простые индексно-последовательные организации записей быстро развились к более мощной модели записей, ориентированной на наборы. За руководство работой Data Base Task Group (DBTG), разработавшей стандартный язык описания данных и манипулирования данными, Чарльз Бахман получил Тьюринговскую премию.

В это же время в сообществе баз данных Кобол была проработана концепция схем баз данных и концепция независимости данных.

Следующий важный этап связан с появлением в начале 1970-х реляционной модели данных, благодаря работам Эдгара Кодда.
Работы Кодда открыли путь к тесной связи прикладной технологии баз данных с математикой и логикой. За свой вклад в теорию и практику Эдгар Ф. Кодд также получил премию Тьюринга.

Сам термин база данных (англ. database) появился в начале 1960-х годов, и был введён в употребление на симпозиумах, организованных компанией SDC в и 1965 годах, хотя понимался сначала в довольно узком смысле, в контексте систем искусственного интеллекта. В широкое употребление в современном понимании термин вошёл лишь в 1970-е годы.

Системы управления базами данных

СУБД, как уже говорилось ранее, — это набор программ, делающих возможным построение баз данных и их использование. В обязанности СУБД входит:

Создание базы данных. Некоторые системы управляют одним большим файлом и создают одну или несколько баз данных внутри него, другие могут задействовать несколько файлов операционной системы или же непосредственно реализовывать низкоуровневый доступ к разделам диска. Пользователи и разработчики не должны заботиться о низкоуровневой структуре таких файлов, т. к. весь необходимый доступ обеспечивает СУБД.

Предоставление средств для выполнения запросов и обновлений. СУБД должна обеспечивать возможность запроса данных, удовлетворяющих некоторому критерию, например возможность выбора всех заказов, сделанных некоторым клиентом, но еще не доставленных. До того как SQL получил широкое распространение в качестве стандартного языка, способы выражения таких запросов менялись от системы к системе.

Многозадачность. Если с базой данных работают несколько приложений или к ней одновременно осуществляют доступ несколько пользователей, то СУБД должна гарантировать, что обработка запроса каждого пользователя не влияет на работу остальных. То есть пользователям приходится ждать, только если кто-то другой записывает данные именно тогда, когда им нужно прочитать (или записать) данные в какой-то элемент. Одновременно может происходить несколько считываний данных. На поверку оказывается, что разные базы данных поддерживают разные уровни многозадачности и что эти уровни даже могут быть настраиваемыми.

Ведение журнала. СУБД должна вести журнал всех изменений данных за некоторый период времени. Он может использоваться для отслеживания ошибок, а также (может быть, это даже важнее) для восстановления данных в случае сбоя системы, например внепланового выключения питания. Обычно производится резервное копирование данных и ведется журнал транзакций, т. к. резервная копия может быть полезна для восстановления базы данных в случае повреждения диска.

Обеспечение безопасности базы данных. СУБД должна обеспечивать контроль над доступом, чтобы только зарегистрированные пользователи могли манипулировать данными, хранящимися в базе, и самой структурой базы данных (атри­бутами, таблицами и индексами). Обычно для каждой базы определяется иерархия пользователей, во главе этой структуры стоит «суперпользователь», который может изменять все что угодно, дальше идут пользователи, которые могут добавлять и удалять данные, а в самом низу находятся те, кто имеет право только на чтение. СУБД должна иметь средства, позволяющие добавлять и удалять пользователей, а также указывать, к каким возможностям базы данных они могут получить доступ.

Поддержание ссылочной целостности. Многие СУБД имеют свойства, способствующие поддержанию ссылочной целостности, то есть корректности данных. Обычно, если запрос или обновление нарушает правила реляционной модели, СУБД выдает сообщение об ошибке.

Вас заинтересует / Intresting for you:

База данных как объект правово… 535 просмотров Денис Wed, 27 Mar 2019, 03:16:24

Перенос корпоративных баз данн… 837 просмотров Дэн Fri, 27 Sep 2019, 07:52:18

Что такое SQL? Плюсы и минусы … 3586 просмотров Андрей Васенин Tue, 21 Nov 2017, 13:17:28

База данных и СУБД: основные п… 8169 просмотров Дэйзи ак-Макарова Fri, 24 Nov 2017, 05:30:03

Author: Светлана

Другие статьи автора:

Процесс проектирования

Дизайн базы данных — это больше искусство, чем наука, так как пользователю придется принимать множество решений. БД обычно настраиваются под конкретное приложение. Нет двух одинаковых пользовательских приложений, и, следовательно, нет двух одинаковых БД. Руководящие принципы обычно указывают на то, что не следует делать, хотя выбор в конечном итоге зависит от дизайнера.

Алгоритм проектирования:

  1. Определяют цель БД для анализа требований.
  2. Собирают требования. Выполняют сбор данных, организацию таблиц и указывают первичные ключи.
  3. Выбирают один или несколько столбцов в качестве так называемого первичного ключа с целью идентификации строк.
  4. Создают отношения между таблицами. Сила реляционной БД заключается в отношениях между таблицами. Наиболее важным аспектом при разработке РБД является выявление взаимосвязей между ними.
  5. Необходимо выбрать необходимый тип данных для конкретного столбца. Обычно типы данных содержат: целые числа, строку (или текст), дату, время, двоичный код, коллекцию, например перечисление и набор.
  6. Уточняют дизайн, добавив больше столбцов.
  7. Создают новую таблицу для необязательных данных, используя отношение один к одному.
  8. Разбивают большой стол на два меньших стола.
  9. Применяют правила нормализации, чтобы проверить, является ли база данных структурно правильной и оптимальной.
  10. Индекс может быть определен для одного столбца, набора столбцов, называемого составным индексом, или части столбца, называемой частичным индексом. Можно создать более одного индекса в таблице. Например, если часто ищут клиента, используя либо customer Name либо phone Number, можно ускорить поиск, построив индекс по столбцу customer Name, а также phone Number.
  11. Большинство СУБД автоматически строит индекс по первичному ключу.

Для чего нужны

Вот основ­ные зада­чи БД на при­ме­ре гардеробной:

  • Сохра­нить наши дан­ные по запро­су — что­бы вы мог­ли открыть дверь, пове­сить курт­ку, закрыть дверь и боль­ше не думать ни о курт­ке, ни о гардеробной.
  • Изме­нить наши дан­ные по запро­су — что­бы мож­но было лег­ко извлечь из гар­де­роб­ной все дыря­вые нос­ки и поло­жить на их место целые.
  • Най­ти эти дан­ные по запро­су — что­бы быст­ро най­ти при­лич­ный пиджак или пар­ный носок.
  • Не дать про­чи­тать эти дан­ные тем, кому не сле­ду­ет, а кому надо — дать. Напри­мер, млад­ший брат может смот­реть на ваши крос­сов­ки, но не может их брать. А девуш­ка (или парень) может поло­жить свои вещи, но толь­ко на опре­де­лён­ную полку.
  • Под­дер­жи­вать поря­док и не дать захла­мить­ся — если вам было лень и вы про­сто кину­ли тол­стов­ку куда попа­ло, что­бы гар­де­роб­ная либо сама нашла, куда эту тол­стов­ку пра­виль­но поло­жить, либо ска­за­ла: «Э БРАТ ЗАЧЕМ ЗАХЛАМЛЯЕШЬ ПОЛОЖИ НОРМАЛЬНО ДАВАЙ»
  • Мас­шта­би­ро­вать­ся — что­бы вы мог­ли про­сто вешать в гар­де­роб­ную вещи и не думать об объ­ё­ме полок.
  • Не поте­рять дан­ные — если квар­ти­ра будет гореть, при­лич­ная гар­де­роб­ная не долж­на даже нагреть­ся. Или, если она всё-таки горит, что­бы где-то в защи­щён­ном под­зем­ном гара­же была точ­ная копия этой гар­де­роб­ной со все­ми акту­аль­ны­ми вещами.

Проблемы определения

В литературе предлагается множество определений понятия «база данных», отражающих скорее субъективное мнение тех или иных авторов, однако общепризнанная единая формулировка отсутствует.

Определения из международных стандартов и национальных стандартов, разработанных на основе международных:

  • База данных — совокупность данных, хранимых в соответствии со схемой данных, манипулирование которыми выполняют в соответствии с правилами средств моделирования данных.
  • База данных — совокупность данных, организованных в соответствии с концептуальной структурой, описывающей характеристики этих данных и взаимоотношения между ними, которая поддерживает одну или более областей применения.

Определения из авторитетных монографий:

  • База данных — организованная в соответствии с определёнными правилами и поддерживаемая в памяти компьютера совокупность данных, характеризующая актуальное состояние некоторой предметной области и используемая для удовлетворения информационных потребностей пользователей.
  • База данных — некоторый набор перманентных (постоянно хранимых) данных, используемых прикладными программными системами какого-либо предприятия.
  • База данных — совместно используемый набор логически связанных данных (и описание этих данных), предназначенный для удовлетворения информационных потребностей организации.

В определениях наиболее часто (явно или неявно) присутствуют следующие отличительные :

  1. БД хранится и обрабатывается в вычислительной системе.Таким образом, любые внекомпьютерные хранилища информации (архивы, библиотеки, картотеки и т. п.) базами данных не являются.
  2. Данные в БД логически структурированы (систематизированы) с целью обеспечения возможности их эффективного поиска и обработки в вычислительной системе.Структурированность подразумевает явное выделение составных частей (элементов), связей между ними, а также типизацию элементов и связей, при которой с типом элемента (связи) соотносится определённая семантика и допустимые операции.
  3. БД включает схему, или метаданные, описывающие логическую структуру БД в формальном виде (в соответствии с некоторой метамоделью).В соответствии с ГОСТ Р ИСО МЭК ТО 10032-2007, «постоянные данные в среде базы данных включают в себя схему и базу данных. Схема включает в себя описания содержания, структуры и ограничений целостности, используемые для создания и поддержки базы данных. База данных включает в себя набор постоянных данных, определённых с помощью схемы. Система управления данными использует определения данных в схеме для обеспечения доступа и управления доступом к данным в базе данных».

Из перечисленных признаков только первый является строгим, а другие допускают различные трактовки и различные степени оценки. Можно лишь установить некоторую степень соответствия требованиям к БД.

В такой ситуации не последнюю роль играет общепринятая практика. В соответствии с ней, например, не называют базами данных файловые архивы, Интернет-порталы или электронные таблицы, несмотря на то, что они в некоторой степени обладают признаками БД. Принято считать, что эта степень в большинстве случаев недостаточна (хотя могут быть исключения).

Таблица как важная часть реляционной БД

Всем известно, что реляционная база данных состоит из таблиц. При этом каждая таблица включает в себя столбцы (поля либо атрибуты) и строки (записи либо кортежи).

Таблицы в таких БД обладают следующими свойствами:
— столбцы размещаются в определённом порядке, формируемом при создании таблицы. Таблица может не иметь ни одной строки, однако хотя бы один столбец должен быть обязательно;
— в таблице не может быть 2-х одинаковых строк. Если вспомнить математику, то такие таблицы называют отношениями (relation). Именно поэтому данные БД и считаются реляционными;
— каждый столбец в пределах таблицы имеет уникальное имя, а все значения в одном столбце должны быть одного типа (дата, текст, число и т. п.);
— на пересечении строки и столбца может быть только атомарное значение (значение, не состоящее из группы значений). Таблицы, которые удовлетворяют этим условиям, считаются нормализованными.

Как хранится информация в БД

В основе всей структуры хранения лежат три понятия:

  • База данных;
  • Таблица;
  • Запись.

База данных

База данных — это высокоуровневное понятие, которое означает объединение совокупности данных, хранимых для выполнения одной цели.
Если мы делаем современный сайт, то все его данные будут храниться внутри одной базы данных. Для сайта онлайн-дневника наблюдений за погодой тоже понадобится создать отдельную базу данных.

Таблица

По отношению к базе данных таблица является вложенным объеком. То есть одна БД может содержать в себе множество таблиц.
Аналогией из реального мира может быть шкаф (база данных) внутри которого лежит множество коробок (таблиц).
Таблицы нужны для хранения данных одного типа, например, списка городов, пользователей сайта, или библиотечного каталога.
Таблицу можно представить как обычный лист в Excel-таблице, то есть совокупность строк и столбцов.
Наверняка каждый хоть раз имел дело с электронными таблицами (MS Excel).
Заполняя такую таблицу, пользователь определяет столбцы, у каждого из которых есть заголовок. В строках хранится информация.
В БД точно также: создавая новую таблицу, необходимо описать, из каких столбцов она состоит, и дать им имена.

Запись

Запись — это строка электронной таблицы.
Это неделимая сущность, которая хранится в таблице. Когда мы сохраняем данные веб-формы с сайта, то на самом деле добавляем новую запись в какую-то из таблиц базы данных. Запись состоит из полей (столбцов) и их значений. Но значения не могут быть какими угодно.
Определяя столбец, программист должен указать тип данных, который будет храниться в этом столбце: текстовый, числовой, логический, файловый и т.д. Это нужно для того, чтобы в будущем в базу не были записаны данные неверного типа.

Соберем всё вместе, чтобы понять, как будет выглядеть ведение дневника погоды при участии базы данных.

  1. Создадим для сайта новую БД и дадим ей название «weather_diary».
  2. Создадим в БД новую таблицу с именем «weather_log» и определим там следующие столбцы:
    • Город (тип: текст);
    • День (тип: дата);
    • Температура (тип: число);
    • Облачность (тип: число; от 0 (нет облачности) до 4 (полная облачность));
    • Были ли осадки (тип: истина или ложь);
    • Комментарий (тип: текст).
  3. При сохранении формы будем добавлять в таблицу weather_log новую запись, и заполнять в ней все поля информацией из полей формы.

Теперь можно быть уверенными, что наблюдения наших пользователей не пропадут, и к ним всегда можно будет получить доступ.

Реляционная база данных

Английское слово „relation“ можно перевести как связь, отношение.
А определение «реляционные базы данных» означает, что таблицы в этой БД могут вступать в отношения и находиться в связи между собой.
Что это за связи?
Например, одна таблица может ссылаться на другую таблицу. Это часто требуется, чтобы сократить объём и избежать дублирования информации.
В сценарии с дневником погоды пользователь вводит название своего города. Это название сохраняется вместе с погодными данными.
Но можно поступить иначе:

  1. Создать новую таблицу с именем „cities“.
  2. Все города в России известны, поэтому их все можно добавить в одну таблицу.
  3. Переделать форму, изменив поле ввода города с текстового на поле типа «select», чтобы пользователь не вписывал город, а выбирал его из списка.
  4. При сохранении погодной записи, в поле для города поставить ссылку на соответствующую запись из таблицы городов.

Так мы решим сразу две задачи:

  • Сократим объём хранимой информации, так как погодные записи больше не будут содержать название города;
  • Избежим дублирования: все пользователи будут выбирать один из заранее определённых городов, что исключит опечатки.

Связи между таблицами в БД бывают разных видов.
В примере выше использовалась связь типа «один-ко-многим», так как одному городу может соответствовать множество погодных записей, но не наоборот!
Бывают связи и других типов: «один-к-одному» и «многие-ко-многим», но они используются значительно реже.

Сетевые

В отли­чие от реля­ци­он­ных баз, в сете­вых меж­ду таб­ли­ца­ми и запи­ся­ми может быть несколь­ко раз­ных свя­зей, каж­дая из кото­рый отве­ча­ет за что-то своё.

Если мы возь­мём базу дан­ных с сай­та Кино­по­ис­ка, то она может выгля­деть так:

Осо­бен­ность сете­вой базы дан­ных в том, что в ней запо­ми­на­ют­ся все свя­зи и всё содер­жи­мое для каж­дой свя­зи. Базе не нуж­но тра­тить вре­мя на поиск нуж­ных дан­ных, пото­му что вся инфор­ма­ция об этом уже есть в спе­ци­аль­ных индекс­ных фай­лах. Они пока­зы­ва­ют, какая запись с какой свя­за­на, и быст­ро выда­ют результат.

Напри­мер, вы посмот­ре­ли «Нача­ло» Кри­сто­фе­ра Нола­на и вам понра­вил­ся этот фильм. Когда вы перей­дё­те к спис­ку филь­мов, кото­рые он ещё снял, база на сай­те сде­ла­ет так:

  • возь­мёт имя режиссёра;
  • посмот­рит, какие свя­зи и с чем у него есть;
  • выдаст спи­сок фильмов;
  • к этим филь­мам может сра­зу под­гру­зить спи­сок актё­ров, кото­рые там играют;
  • и сра­зу же пока­зать посте­ры к каж­до­му фильму.

А глав­ное — база сде­ла­ет это очень быст­ро, пото­му что ей не нуж­но про­смат­ри­вать всю базу в поис­ках нуж­ных филь­мов. Она сра­зу видит, какие филь­мы с чем свя­за­ны, и выда­ёт ответ.

В чём преимущества

Базы дан­ных и их систе­мы управ­ле­ния зато­че­ны на рабо­ту с боль­шим объ­ё­мом дан­ных и от лица боль­шо­го чис­ла поль­зо­ва­те­лей. Сей­час вы поймёте.

Ско­рость — ещё одно пре­иму­ще­ство базы дан­ных. База дан­ных устро­е­на так, что она лег­ко и быст­ро нахо­дит, запи­сы­ва­ет, пере­пи­сы­ва­ет и сно­ва нахо­дит дан­ные. Всё пото­му, что СУБД все­гда зна­ет, что где лежит и по како­му кри­те­рию искать. Там не будет слу­чай­ных дан­ных в слу­чай­ном месте.

Ско­рость важ­на ещё и пото­му, что СУБД обыч­но обслу­жи­ва­ет сра­зу мно­го пото­ков: одно­вре­мен­но ей могут поль­зо­вать­ся десят­ки и сот­ни тысяч чело­век, поэто­му ей неко­гда копать­ся. В хоро­шо сде­лан­ных БД всё молниеносно.

Слож­ность. Базы дан­ных нуж­ны в чис­ле про­че­го для хра­не­ния слож­но струк­ту­ри­ро­ван­ных дан­ных. Мы при­вык­ли думать, что база дан­ных — это такая таб­ли­ца, где есть стро­ки и столб­цы. Но база дан­ных при пра­виль­ной орга­ни­за­ции может намно­го больше:

  • Свя­зы­вать одну еди­ни­цу дан­ных с мно­же­ством дру­гих. Напри­мер, если один чело­век совер­шил мно­го зака­зов со мно­же­ством това­ров внут­ри каж­до­го, база дан­ных спо­соб­на хра­нить и обра­ба­ты­вать такие связи.
  • База может хра­нить дере­во дан­ных — вро­де того, о кото­ром мы писа­ли недав­но. Попро­буй в реаль­ной жиз­ни похра­нить дерево!
  • В базах могут жить ссыл­ки на дру­гие фраг­мен­ты и отде­лы базы.

Базу мож­но пред­ста­вить как таб­ли­цу, но лишь в самом упро­щён­ном виде. Для более слож­ных задач базу мож­но пред­ста­вить как очень слож­ное дере­во, или огром­ный склад упо­ря­до­чен­ных коро­бок, или даже как огром­ный завод по фасов­ке данных.

Проектирование реляционной базы данных. Преобразование модели в реляционную

Преобразование концептуальной модели данных в реляционную — важная часть проектирования БД. Процесс включает в себя:
— построение набора предварительных таблиц;
— указание РК;
— выполнение нормализации.

Из набора таблиц состоят наши объекты, а из полей таблиц — атрибуты объектов:

Итак, мы определились с таблицами, полями, РК и FK. Следует отметить, что в таблицах «Журнал покупок» и «Журнал поставок» РК составные, т. к. состоят из 2-х полей.

Что касается нормализации, то под ней понимают обратимый и пошаговый процесс, при котором исходная схема меняется другой схемой, в которой таблицы характеризуются более простой и логичной структурой. Это нужно по следующим причинам:
1. Устранение избыточности данных. Вспомним нашу таблицу:

Очевидно, что в поле «Темы» одни и те же названия встречаются регулярно. Для хранения таких данных нужны дополнительные ресурсы памяти. Кроме того, при дублировании данных можно допустить ошибку во время ввода значений атрибута, вследствие которой БД перейдёт в состояние несогласованности.
2. Устранение различных аномалий, связанных с обновлением, удалением, модификацией и пр. Пример аномалии модификации — чтобы поменять название темы, нам придётся смотреть все строки и менять название в каждой из них.

Нормализация бывает:
— 1-й нормальной формы (1НФ);
— 2НФ;
— 3НФ;
— НФБК (нормальной формы Бойса-Кодда);
— 4НФ;
— 5НФ.

Каждая форма накладывает определённые ограничения на данные разного уровня. В ходе нормализации база данных становится всё строже, подверженность аномалиям снижается.

Если говорить о реляционных базах данных, то минимум — это 1НФ. Однако в процессе проектирования специалисты по СУБД стремятся нормализовать базу хотя бы до уровня 3НФ, исключив тем самым избыточность данных и аномалии

Это важно, если мы стремимся получить качественный результат проектирования. Однако подробное описание нормализации данных выходит за рамки нашей статьи, поэтому давайте просто посмотрим, как будет выглядеть наша база на уровне 3НФ:

Итак, в процессе проектирования мы преобразовали концептуальную модель в реляционную. Следующий этап — реализация её в конкретной СУБД. Для этого потребуется как сама СУБД, так и знание языка SQL. Например, прекрасно подойдёт СУБД MySQL или какая-нибудь другая СУБД.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector