Python массивы (матрицы): как создавать, формат и базовые операции

Содержание:

Через телефон

Проще всего менять привязку к номеру сотового именно через телефон, потому что мобильная версия Инстаграма имеет более широкий функционал, чем компьютерная. Ниже мы пошагово опишем процесс изменения номера в модификации приложения для разных операционных систем.

Android

В гаджетах на базе Андроид (и смартфонах, и планшетах), чтобы изменить номер мобильного телефона, необходимо действовать таким образом:

  1. Запускаем Инстаграм.
  2. В нижней панели меню тапаем на свою аватарку или значок человечка, чтобы перейти в профиль.
  3. В новом окне под количеством публикаций, подписчиков и подписок выбираем надпись «Редактировать профиль».
  4. Пролистываем вниз и доходим до раздела «Личная информация».
  5. Заходим в пункт «Номер телефона».
  6. Вводим свой новый номер, который хотим привязать к странице в Инстаграм и нажимаем кнопку подтверждения.

Готово! Номер изменен, теперь уведомления будут высылаться на него.

Iphone

Чтобы изменить привязанный к аккаунту в Инстаграме номер, на Айфоне следует выполнить такие шаги:

  1. Открываем Инстаграм.
  2. На нижней панели в правом нижнем углу находим значок свой аватарки или человечка.
  3. Переходим в меню изменения данных через клавишу «Редактировать профиль», которая находится справа от аватарки.
  4. Листаем меню, переходим к разделу «Личные данные».
  5. В графе «Номер телефона» вводим новую комбинацию, предварительно нажав на нее.
  6. Подтверждаем свои действия.

Готово! После этого ваш номер в профиле Инстаграм будет изменен.

2. Синтаксис

Важно

Общие принципы важные для понимания:

  • Ввод — это итератор — это может быть функция-генератор, выражение-генератор, коллекция — любой объект поддерживающий итерацию по нему.
  • Условие — это фильтр при выполнении которого элемент пойдет в финальное выражение, если элемент ему не удовлетворяет, он будет пропущен.
  • Финальное выражение — преобразование каждого выбранного элемента перед его выводом или просто вывод без изменений.

несколько условий, комбинируя их логическими операторами

2.4 Ветвление выражения

Обратите внимание:if-else для ветвления финального выражения

  • Условия ветвления пишутся не после, а перед итератором.
  • В данном случае if-else это не фильтр перед выполнением выражения, а ветвление самого выражения, то есть переменная уже прошла фильтр, но в зависимости от условия может быть обработана по-разному!

комбинировать фильтрацию и ветвление

Решение задач

1. Создайте список из 10 четных чисел и выведите его с помощью цикла for

2. Создайте список из 5 элементов. Сделайте срез от второго индекса до четвертого

3. Создайте пустой список и добавьте в него 10 случайных чисел и выведите их. В данной задаче нужно использовать функцию randint.

from random import randint

n = randint(1, 10) # Случайное число от 1 до 10

4. Удалите все элементы из списка, созданного в задании 3

5. Создайте список из введенной пользователем строки и удалите из него символы ‘a’, ‘e’, ‘o’

6. Даны два списка, удалите все элементы первого списка из второго

a =

b =
# Вывод
>>>

7. Создайте список из случайных чисел и найдите наибольший элемент в нем.

8. Найдите наименьший элемент в списке из задания 7

9. Найдите сумму элементов списка из задания 7

10.Найдите среднее арифметическое элементов списка из задания 7

Добавление нового массива

Перед процессом создание нового массива, необходимо выполнить некоторые действия. Для начала, стоит произвести импорт библиотеки, которая отвечает за работу с подобными объектами. Чтобы выполнить это действие, нужно добавить в файл программы следующую строку: from array import *.

Исходя из того, что массивы предназначены для работы с одним типом данных, то и, соответственно, размер ячеек этих данных также будет одинаков.

Для создания нового массива данных используется такая функция, как «array». Ниже представлен пример того, как заполняется массив с помощью перечисленных действий:

from array import *data = array(‘i’, )

Функция «array» способна принимать два аргумента, одним из них является вид массива, который создается, другим – исходный перечень значений массива. В этом примере i является числом, размер которого составляет 2 б. Стоит отметить, что можно использовать не только этот примитив, но и другие – c, f и т. д.

Действия для добавления нового элемента

Для того, чтобы в массиве появился новый элемент, необходимо воспользоваться таким методом, как «insert». Это делается с помощью ввода в созданный ранее объект двух значений, являющихся аргументами. Цифра 3 представляет собой не что иное, как само значение, а 4 указывает на место в массиве, где будет располагаться элемент, т. е. его индекс.

Действия для удаления нового элемента

В рассматриваемом языке программирования избавиться от лишних элементов можно посредством такого метода, как «pop». Данный метод имеет аргумент (3) и может быть вызван через объект, который создавался ранее, т. е. способом, аналогичным добавлению нового элемента.

data.pop(3)

После того, как произошло удаление лишнего, в массиве происходит сдвиг его содержимого таким образом, чтобы число свободных ячеек памяти совпало с текущим количеством элементов.

Проверка

Зачастую возникает необходимость проверки данных при работе с любой программой, которая проводится путем вывода на экран. Эта операция может быть совершена с помощью такой команды, как «print». Аргументом для этой функции является элемент массива, созданного ранее.

В нижеприведенном примере видно, что обработка массива происходит с помощью цикла «for», в котором любой элемент массива идентификатором i для передачи в «print».

Генератор списка с lambda

Как известно, лямбда-функции в Python представляют собой некую операцию, возвращающую значение. Преимуществом данного механизма является возможность его применения внутри выражения. Это позволяет значительно уменьшить объем набираемого программистом кода, поскольку в таком случае нет необходимости отдельно объявлять новый метод. Генератор списка с lambda в Python позволяет

Иногда используются в Python lambda-функции в генераторе списков. В следующем примере будет создана новая последовательность чисел, полученных в результате выполнения метода range. Как и раньше, элемент этого набора представляется в виде переменной i, которая пошагово получает новые значения (от 0 до 9) в цикле for. Лямбда-функция принимает в качестве аргумента значение, затем перемножает его само на себя и возвращает обратно в генератор.

>>> data = 
>>> print(data)

Таким образом, создается список data, содержащий результаты возведения в квадрат для чисел от 0 до 9. Как обычно, функция print выводит информацию на экран.

Простая генерация

Самым простым способом создания списка является обычное присваивание ему необходимых значений или объектов. В том случае, когда элементов последовательности немного, их можно просто перечислить один за другим. Но если их количество переваливает за десяток, следует всерьез задуматься об использовании генератора списка. Данная конструкция обеспечивает его автоматическое заполнение, исходя из определенных инструкций.

Следующий пример демонстрирует создание в Python списка чисел при помощи генератора. Переменная i является ссылкой на текущий элемент объекта data. Функция range здесь принимает два аргумента, которые устанавливают границы для сгенерированной последовательности целых чисел. Вывод информации на экран происходит через метод print.

>>> data = 
>>> print(data)

Генераторы списка Python 3 работают не только с численными значениями. Как показывает следующий пример, генератору можно передать в качестве аргумента строку либо ссылку на нее.

>>> data = 
>>> print(data)

В результате выполнения этого кода будет построен список из символов, которые включала в себя исходная строка. Как и в случае с предыдущим примером, вывести полученный набор данных на экран можно при помощи уже известного метода print.

Обработка двумерного массива: пример

Предположим, вам задан квадратный массив (массив из строк и столбцов). Предположим, вы должны установить элементы главной диагонали, равные 1 (т. Е. Те элементы для которых ), чтобы установить элементы выше, чем диагональ, равная 0, и установить элементы ниже этой диагонали, равной 2. То есть вам нужно создать такой массив (пример для ):

 
1 0 0 0
2 1 0 0
2 2 1 0
2 2 2 1

Мы стремимся показать вам несколько способов решения этой проблемы

Во-первых, обратите внимание, что элементы, лежащие над главной диагональю, — это элементы для которых , а для элементов ниже главной диагонали. Таким образом, мы можем сравнить значения и , определяющие значение

Мы получаем следующий алгоритм:

None
n = 4
a =  * n for i in range(n)]
for i in range(n):
    for j in range(n):
        if i < j:
            a = 0
        elif i > j:
            a = 2
        else:
            a = 1
for row in a:
    print(' '.join())

Этот алгоритм медленный: он использует два цикла и для каждой пары выполняет одну или две команды . Если мы усложним алгоритм, мы сможем сделать это без условного оператора.

Сначала заполните основную диагональ, для которой нам понадобится один цикл:

for i in range(n):
    a = 1

Затем заполните нулями все элементы над главной диагональю. Чтобы сделать это, для каждой строки с номером вам нужно присвоить значение для = , …, . Для этого вам нужны вложенные циклы:

for i in range(n):
    for j in range(i + 1, n):
        a = 0

По аналогии, для = , …, задайте элементы равными :

for i in range(n):
    for j in range(0, i):
        a = 2

Вы можете комбинировать весь этот код и получить другое решение:

None
n = 4
a =  * n for i in range(n)]
for i in range(n):
    for j in range(0, i):
        a = 2
    a = 1
    for j in range(i + 1, n):
        a = 0
for row in a:
    print(' '.join())

Вот еще одно решение, которое повторяет списки для создания следующих строк списка. строка списка состоит из чисел , за которым следует одно целое число , за которым следуют нули:

None
n = 4
a =  * n
for i in range(n):
    a =  * i +  +  * (n - i - 1)
for row in a:
    print(' '.join())    

Как обычно, вы можете заменить петлю генератором:

None
n = 4
a =  * n
a =  * i +  +  * (n - i - 1) for i in range(n)]
for row in a:
    print(' '.join())    

Создание списка

Пусть даны два числа: количество строк и количество столбцов
. Необходимо создать список размером ×, заполненный нулями.

Очевидное решение оказывается неверным:

A =  * m ] * n

В этом легко убедиться, если присвоить элементу
значение , а потом вывести значение другого элемента  — оно тоже будет равно 1! Дело в том, что
возвращает ccылку на список из нулей.
Но последующее повторение этого элемента создает список из
элементов, которые являются ссылкой на один и тот же список (точно
так же, как выполнение операции для списков не создает
новый список), поэтому все строки результирующего списка на самом деле
являются одной и той же строкой.

Таким образом, двумерный список нельзя создавать при помощи операции
повторения одной строки. Что же делать?

Первый способ: сначала создадим список из элементов
(для начала просто из нулей). Затем сделаем каждый
элемент списка ссылкой на другой одномерный список из
элементов:

A =  * n
for i in range(n):
    A =  * m

Другой (но похожий) способ: создать пустой список, потом
раз добавить в него новый элемент, являющийся списком-строкой:

A = []
for i in range(n):
    A.append( * m)

Копии и представления

При работе с массивами, их данные иногда необходимо копировать в другой массив, а иногда нет. Это часто является источником путаницы. Возможно 3 случая:

Вообще никаких копий

Простое присваивание не создает ни копии массива, ни копии его данных:

>>> a = np.arange(12)
>>> b = a  # Нового объекта создано не было
>>> b is a  # a и b это два имени для одного и того же объекта ndarray
True
>>> b.shape = (3,4)  # изменит форму a
>>> a.shape
(3, 4)

Python передает изменяемые объекты как ссылки, поэтому вызовы функций также не создают копий.

Представление или поверхностная копия

Разные объекты массивов могут использовать одни и те же данные. Метод view() создает новый объект массива, являющийся представлением тех же данных.

>>> c = a.view()
>>> c is a
False
>>> c.base is a  # c это представление данных, принадлежащих a
True
>>> c.flags.owndata
False
>>>
>>> c.shape = (2,6)  # форма а не поменяется
>>> a.shape
(3, 4)
>>> c,4 = 1234  # данные а изменятся
>>> a
array(,
       ,
       ])

Срез массива это представление:

>>> s = a = 10
>>> a
array(,
       ,
       ])

Глубокая копия

Метод copy() создаст настоящую копию массива и его данных:

>>> d = a.copy()  # создается новый объект массива с новыми данными
>>> d is a
False
>>> d.base is a  # d не имеет ничего общего с а
False
>>> d,  = 9999
>>> a
array(,
       ,
       ])

8. Использование range()

Особенности функции range():

  • Наиболее часто функция range() применяется для запуска цикла for нужное количество раз. Например, смотрите генерацию матрицы в примерах выше.
  • В Python 3 range() возвращает генератор, который при каждом к нему обращении выдает очередной элемент.
  • Исполльзуемые параметры аналогичны таковым в срезах (кроме первого примера с одним параметром):
    • range(stop) — в данном случае с 0 до stop-1;
    • range(start, stop) — Аналогично примеру выше, но можно задать начало отличное от нуля, можно и отрицательное;
    • range(start, stop, step) — Добавляем параметр шага, который может быть отрицательным, тогда перебор в обратном порядке.
  • В Python 2 были 2 функции:
    • range(…) которая аналогична выражению list(range(…)) в Python 3 — то есть она выдавала не итератор, а сразу готовый список. То есть все проблемы возможной нехватки памяти, описанные в разделе 4 актуальны, и использовать ее в Python 2 надо очень аккуратно!
    • xrange(…) — которая работала аналогично range(…) в Python 3 и из 3 версии была исключена.

Двумерные массивы

Выше везде элементами массива были числа. Но на самом деле элементами массива может быть что угодно, в том числе другие массивы. Пример:

a = 
b = 
c = 
z = 

Что здесь происходит? Создаются три обычных массива , и , а потом создается массив , элементами которого являются как раз массивы , и .

Что теперь получается? Например, — это элемент №1 массива , т.е. . Но — это тоже массив, поэтому я могу написать — это то же самое, что , т.е. (не забывайте, что нумерация элементов массива идет с нуля). Аналогично, и т.д.

То же самое можно было записать проще:

z = , , ]

Получилось то, что называется двумерным массивом. Его можно себе еще представить в виде любой из этих двух табличек:

Первую табличку надо читать так: если у вас написано , то надо взять строку № и столбец №. Например, — это элемент на 1 строке и 2 столбце, т.е. -3. Вторую табличку надо читать так: если у вас написано , то надо взять столбец № и строку №. Например, — это элемент на 2 столбце и 1 строке, т.е. -3. Т.е. в первой табличке строка — это первый индекс массива, а столбец — второй индекс, а во второй табличке наоборот. (Обычно принято как раз обозначать первый индекс и — второй.)

Когда вы думаете про таблички, важно то, что питон на самом деле не знает ничего про строки и столбцы. Для питона есть только первый индекс и второй индекс, а уж строка это или столбец — вы решаете сами, питону все равно

Т.е. и — это разные вещи, и питон их понимает по-разному, а будет 1 номером строки или столбца — это ваше дело, питон ничего не знает про строки и столбцы. Вы можете как хотите это решить, т.е. можете пользоваться первой картинкой, а можете и второй — но главное не запутайтесь и в каждой конкретной программе делайте всегда всё согласованно. А можете и вообще не думать про строки и столбцы, а просто думайте про первый и второй индекс.

Обратите, кстати, внимание на то, что в нашем примере (массив, являющийся вторым элементом массива ) короче остальных массивов (и поэтому на картинках отсутствует элемент в правом нижнем углу). Это общее правило питона: питон не требует, чтобы внутренние массивы были одинаковой длины

Вы вполне можете внутренние массивы делать разной длины, например:

x = , , , [], ]

здесь нулевой массив имеет длину 4, первый длину 2, второй длину 3, третий длину 0 (т.е. не содержит ни одного элемента), а четвертый длину 1. Такое бывает надо, но не так часто, в простых задачах у вас будут все подмассивы одной длины.

(На самом деле даже элементы одного массива не обязаны быть одного типа. Можно даже делать так: , здесь нулевой элемент массива — сам является массивом, а еще два элемента — просто числа. Но это совсем редко бывает надо.)

В чем отличие DDR3 и DDR3L

Как создаются матрицы в Python?

Добавление и модификация массивов или матриц (matrix) в Python осуществляется с помощью библиотеки NumPy. Вы можете создать таким образом и одномерный, и двумерный, и многомерный массив. Библиотека обладает широким набором пакетов, которые необходимы, чтобы успешно решать различные математические задачи. Она не только поддерживает создание двумерных и многомерных массивов, но обеспечивает работу однородных многомерных матриц.

Чтобы получить доступ и начать использовать функции данного пакета, его импортируют:

import numpy as np

Функция array() — один из самых простых способов, позволяющих динамически задать одно- и двумерный массив в Python. Она создаёт объект типа ndarray:

array = np.array(/* множество элементов */)

Для проверки используется функция array.type() — принимает в качестве аргумента имя массива, который был создан.

Если хотите сделать переопределение типа массива, используйте на стадии создания dtype=np.complex:

array2 = np.array([ /*элементы*/, dtype=np.complex)

Когда стоит задача задать одномерный или двумерный массив определённой длины в Python, и его значения на данном этапе неизвестны, происходит его заполнение нулями функцией zeros(). Кроме того, можно получить матрицу из единиц через функцию ones(). При этом в качестве аргументов принимают число элементов и число вложенных массивов внутри:

np.zeros(2, 2, 2) 

К примеру, так в Python происходит задание двух массивов внутри, которые по длине имеют два элемента:

array(] 
]] 
) 

Если хотите вывести одно- либо двумерный массив на экран, вам поможет функция print(). Учтите, что если матрица слишком велика для печати, NumPy скроет центральную часть и выведет лишь крайние значения. Дабы увидеть массив полностью, используется функция set_printoptions(). При этом по умолчанию выводятся не все элементы, а происходит вывод только первой тысячи. И это значение массива указывается в качестве аргумента с ключевым словом threshold.

Работа с элементами множеств

Узнать число элементов в множестве можно при помощи функции .

Перебрать все элементы множества (в неопределенном порядке!) можно при помощи цикла :

primes = {2, 3, 5, 7, 11}
for num in primes:
    print(num)

Проверить, принадлежит ли элемент множеству можно при помощи операции
, возвращающей значение типа .
Аналогично есть противоположная операция .
Для добавления элемента в множество есть метод :

A = {1, 2, 3}
print(1 in A, 4 not in A)
A.add(4)

Для удаления элемента из множества есть два метода:
и . Их поведение различается
только в случае, когда удаляемый элемент отсутствует в множестве.
В этом случае метод не делает ничего, а метод
генерирует исключение .

Наконец, метод удаляет из множества один случайный
элемент и возвращает его значение. Если же множество пусто, то генерируется
исключение .

Из множества можно сделать список при помощи функции .

Создание списков на Python

  • Создать список можно несколькими способами. Рассмотрим их.

1. Получение списка через присваивание конкретных значений

Так выглядит в коде Python пустой список:

s =   # Пустой список

Примеры создания списков со значениями:

l = 25, 755, -40, 57, -41   # список целых чисел
l = 1.13, 5.34, 12.63, 4.6, 34.0, 12.8   # список из дробных чисел
l = "Sveta", "Sergei", "Ivan", "Dasha"   # список из строк
l = "Москва", "Иванов", 12, 124   # смешанный список
l = , , , 1, , 1, 1, 1,    # список, состоящий из списков
l = 's', 'p', 'isok', 2 # список из значений и списка

2. Списки при помощи функции List()

Получаем список при помощи функции List()

empty_list = list() # пустой список
l = list ('spisok')  # 'spisok' - строка
print(l) # - результат - список

4. Генераторы списков

  • В python создать список можно также при помощи генераторов, — это довольно-таки новый метод:
  • Первый простой способ.

Сложение одинаковых списков заменяется умножением:

# список из 10 элементов, заполненный единицами
l = 1*10
# список l = 

Второй способ сложнее.

l = i for i in range(10)
# список l = 

или такой пример:

c = c * 3 for c in 'list'
print (c) # 

Пример:
Заполнить список квадратами чисел от 0 до 9, используя генератор списка.

Решение: 

l = i*i for i in range(10)

еще пример:

l = (i+1)+i for i in range(10)
print(l) # 

Случайные числа в списке:

from random import randint 
l = randint(10,80) for x in range(10)
# 10 чисел, сгенерированных случайным образом в диапазоне (10,80)

Задание Python 4_1:
Создайте список целых чисел от -20 до 30 (генерация).

Результат:

Задание Python 4_2:
Создайте список целых чисел от -10 до 10 с шагом 2 (генерация list).

Результат:

Задание Python 4_3:
Создайте список из 20 пятерок (генерация).

Результат:

Задание Python 4_4:
Создайте список из сумм троек чисел от 0 до 10, используя генератор списка (0 + 1 + 2, 1 + 2 + 3, …).

Результат:

Задание Python 4_5 (сложное):
Заполните массив элементами арифметической прогрессии. Её первый элемент, разность и количество элементов нужно ввести с клавиатуры.
  
* Формула для получения n-го члена прогрессии: an = a1 + (n-1) * d

Простейшие операции над списками

  • Списки можно складывать (конкатенировать) с помощью знака «+»:
l = 1, 3 + 4, 23 + 5
 
# Результат:
# l = 
33, -12, 'may' + 21, 48.5, 33 # 

или так:

a=33, -12, 'may'
b=21, 48.5, 33
print(a+b)# 

Операция повторения:

,,,1,1,1 * 2 # , , , , , ]

Пример:
Для списков операция переприсваивания значения отдельного элемента списка разрешена!:

a=3, 2, 1
a1=;
print(a) # 

Можно!

Задание 4_6:
В строке записана сумма натуральных чисел: ‘1+25+3’. Вычислите это выражение. Работать со строкой, как со списком.

Начало программы:

s=input('введите строку')
l=list(str(s));

Как узнать длину списка?

Общее представление о массиве

Массив (в питоне еще принято название «список», это то же самое) — это переменная, в которой хранится много значений. Массив можно представлять себе в виде такой последовательности ячеек, в каждой из которых записано какое-то число:

Значения, хранящиеся в массиве (говорят: элементы массива) нумеруются последовательно, начиная с нуля. На картинке выше числа внутри квадратиков — это значения, хранящиеся в массиве, а числа под квадратиками — номера этих элементов (еще говорят «индексы» элементов)

Обратите внимание, что в массиве 6 элементов, но последний имеет номер 5, т.к. нумерация начинается с нуля

Это важно!

Соответственно, переменная теперь может хранить целиком такой массив. Создается такой массив, например, путем перечисления значений в квадратных скобках:

Теперь переменная a хранит этот массив. К элементам массива можно обращаться тоже через квадратные скобки: — это элемент номер 2, т.е. в нашем случае это . Аналогично, — это 0. В квадратных скобках можно использовать любые арифметические выражения и даже другие переменные: — это 12, обозначает «возьми элемент с номером, равным значению переменной «, аналогично обозначает «возьми элемент с номером, равным 2*i+1», или даже обозначает «возьми элемент с номером, равным четвертому элементу нашего массива» (в нашем примере — это , поэтому — это , т.е. ).

Если указанный номер слишком большой (больше длины массива), то питон выдаст ошибку (т.е. в примере выше будет ошибкой, да и даже тоже). Если указан отрицательный номер, то тут действует хитрое правило. Отрицательные номера обозначают нумерацию массива с конца: — это всегда последний элемент, — предпоследний и т.д. В нашем примере равно 7. Слишком большой отрицательный номер тоже дает ошибку (в нашем примере уже ошибка).

С элементами массива можно работать как с привычными вам переменными. Можно им присваивать значения: , считывать с клавиатуры: , выводить на экран: , использовать в выражениях: (здесь — какая-то еще целочисленная переменная для примера), использовать в if’ах: , или и т.д. Везде, где вы раньше использовали переменные, можно теперь использовать элемент массива.

Перестройка массива

После нарезки данных вам может понадобиться изменить их.

Например, некоторые библиотеки, такие как scikit-learn, могут требовать, чтобы одномерный массив выходных переменных (y) был сформирован как двумерный массив с одним столбцом и результатами для каждого столбца.

Некоторые алгоритмы, такие как рекуррентная нейронная сеть с короткой кратковременной памятью в Keras, требуют ввода данных в виде трехмерного массива, состоящего из выборок, временных шагов и функций.

Важно знать, как изменить ваши массивы NumPy, чтобы ваши данные соответствовали ожиданиям конкретных библиотек Python. Мы рассмотрим эти два примера

Форма данных

Массивы NumPy имеют атрибут shape, который возвращает кортеж длины каждого измерения массива.

Например:

При выполнении примера печатается кортеж для одного измерения.

Кортеж с двумя длинами возвращается для двумерного массива.

Выполнение примера возвращает кортеж с количеством строк и столбцов.

Вы можете использовать размер измерений вашего массива в измерении формы, например, указав параметры.

К элементам кортежа можно обращаться точно так же, как к массиву, с 0-м индексом для числа строк и 1-м индексом для количества столбцов. Например:

Запуск примера позволяет получить доступ к конкретному размеру каждого измерения.

Изменить форму 1D в 2D Array

Обычно требуется преобразовать одномерный массив в двумерный массив с одним столбцом и несколькими массивами.

NumPy предоставляет функцию reshape () для объекта массива NumPy, который можно использовать для изменения формы данных.

Функция reshape () принимает единственный аргумент, который задает новую форму массива. В случае преобразования одномерного массива в двумерный массив с одним столбцом кортеж будет иметь форму массива в качестве первого измерения (data.shape ) и 1 для второго измерения.

Собрав все это вместе, мы получим следующий проработанный пример.

При выполнении примера печатается форма одномерного массива, изменяется массив, чтобы иметь 5 строк с 1 столбцом, а затем печатается эта новая форма.

Изменить форму 2D в 3D Array

Обычно требуется преобразовать двумерные данные, где каждая строка представляет последовательность в трехмерный массив для алгоритмов, которые ожидают множество выборок за один или несколько временных шагов и одну или несколько функций.

Хорошим примером являетсямодель в библиотеке глубокого обучения Keras.

Функция изменения формы может использоваться напрямую, указывая новую размерность. Это ясно с примером, где каждая последовательность имеет несколько временных шагов с одним наблюдением (функцией) на каждый временной шаг.

Мы можем использовать размеры в атрибуте shape в массиве, чтобы указать количество выборок (строк) и столбцов (временных шагов) и зафиксировать количество объектов в 1

Собрав все это вместе, мы получим следующий проработанный пример.

При выполнении примера сначала печатается размер каждого измерения в двумерном массиве, изменяется форма массива, а затем суммируется форма нового трехмерного массива.

Операция in

С помощью in мы можем проверить наличие элемента в списке, строке и любой другой итерируемой переменной.

fruits =
if ‘Apple’ in fruits:

    print(‘В списке есть элемент Apple’)

>>> В списке есть элемент Apple

fruits =
if ‘Lemon’ in fruits:

    print(‘В списке есть элемент Lemon’)
else:’

    print(‘В списке НЕТ элемента Lemon’)

>>> В списке НЕТ элемента Lemon

Приведу более сложный пример:

all_fruits =

my_favorite_fruits =
for item in all_fruits:

    if item in my_favorite_fruits:

        print(item + ‘ is my favorite fruit’)

    else:

        print(‘I do not like ‘ + item)

>>> Apple is my favorite fruit
>>> I do not like Grape
>>> I do not like Peach
>>> Banan is my favorite fruit
>>> Orange is my favorite fruit

Индекс строки в Python

Строка представляет собой упорядоченный набор символов. Это значит, что каждый символ в строке занимает свое место – индекс. Например, у строки ‘string’, символ ‘s’ имеет индекс 0 и далее по порядку:

Первый по счету символ в строке всегда будет иметь индекс 0. Таким образом, обратившись по индексу к элементу, мы можем узнать его значение. В чем и состоит смысл индексов. У пробела, так же есть индекс.

Так мы получим всю строку целиком:

get_str = ‘это строка’ print(get_str) это строка

А здесь, обратившись по индексу 5, получаем его значение – символ ‘t’.

get_s = ‘это строка’ print(get_s) t

При обращении к несуществующему индексу, программа выведет ошибку.

get_s = ‘это строка’ print(get_s) IndexError: string index out of range

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector